DOC PREVIEW
Rotational actuators based on carbon nanotubes

This preview shows page 1 out of 3 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 3 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 3 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

agreement with the recent results from the Wilkinson MicrowaveAnisotropy Probe (WMAP) which indicate that the first onset ofstar formation most probably occurred at redshifts z < 15–20(,250 Myr after the Big Bang)25–27.The presence of Lya emitting galaxies and luminous quasars atthe end of cosmic reionization (z . 6.0), at a time when the IGMwas at least 1% neutral, was clearly demonstrated5,28. This epoch ofreionization represents a key benchmark in cosmic structure for-mation, indicating the formation of the first luminous structures.Detecting a large reservoir of molecular gas in this epoch demon-strates the existence of the requisite fuel for active star formation inprimeval galaxies. The existence of such reservoirs of molecular gasat early times implies that studies of the youngest galaxies will bepossible at millimetre and centimetre wavelengths, unhindered byobscuration by the neutral IGM. AReceived 16 May; accepted 16 June 2003; doi:10.1038/nature01821.1. Ohta, K. et al. Detection of molecular gas in the quasar BR1202-0725 at redshift z ¼ 4.69. Nature 382,426–428 (1996).2. Omont, A. et al. Molecular gas and dust around a radio-quiet quasar at redshift 4.69. Nature 382,428–431 (1996).3. Carilli, C. L. et al. High-resolution imaging of molecular line emission from high redshift QSOs.Astron. J 123, 1838–1846 (2002).4. Carilli, C. L. & Blain, A. W. Centimeter searches for molecular line emission from high-redshiftgalaxies. Astrophys. J. 569, 605–610 (2002).5. Fan, X. et al. A survey of z . 5.7 quasars in the sloan digital sky survey. II. Discovery of threeadditional quasars at z . 6. Astron. J. 125, 1649–1659 (2003).6. White, R. L., Becker, R. H., Fan, X. & Strauss, M. A. Probing the ionization state of the universe atz . 6. Astron. J. (in the press).7. Willott, C. J., McLure, R. L. & Jarvis, M. J. A 3 £ 109M(black hole in the quasar SDSS J1148 þ 5251at z ¼ 6.41. Astrophys. J. 587, L15–L18 (2003).8. Loeb, A. & Barkana, R. The reionization of the Universe by the first stars and quasars. Annu. Rev.Astron. Astrophys. 39, 19–66 (2000).9. Bertoldi, F. et al. Dust emission from the most distant quasars. Astron. Astrophys. Lett. (in the press).10. Bertoldi, F. et al. Molecular gas in the host galaxy of a quasar at redshift z ¼ 6.42. Astron. Astrophys. (inthe press).11. Solomon, P. M., Radford, S. J. E. & Downes, D. Molecular gas content of the primeval galaxy IRAS10214 þ 4724. Nature 356, 318–321 (1992).12. Strong, A. W. et al. Diffuse continuum gamma rays from the Galaxy observed by COMPTEL. Astron.Astrophys. 292, 82–91 (1994).13. Downes, D. & Solomon, P. Rotating nuclear rings and extreme starbursts in ultra-luminous galaxies.Astrophys. J. 507, 615–654 (1998).14. Weiss, A., Neininger, N., Huttemeister, S. & Klein, U. The effect of violent star formation on the stateof the molecular gas in M82. Astron. Astrophys. 365, 571–587 (2001).15. Solomon, P. M., Downes, D., Radford, S. J. E. & Barrett, J. W. The molecular inter-stellar medium inultraluminous infrared galaxies. Astrophys. J. 478, 144 (1997).16. Ferrarese, L. & Merritt, D. A fundamental relation between supermassive black holes and their hostgalaxies. Astrophys. J. 539, L9–L12 (2000).17. Gebhardt, K. et al. A relationship between the nuclear black hole mass and galaxy velocity dispersion.Astrophys. J. 539, L13–L16 (2000).18. Richards, G. T. et al. Broad emission-line shifts in quasars: an orientation measure for radio-quietquasars? Astron. J. 124, 1–17 (2002).19. Haiman, Z. & Cen, R. A constraint on the gravitational lensing magnification and the age of theredshift z ¼ 6.28 quasar SDSS 1030 þ 0524. Astrophys. J. 578, 702–707 (2001).20. Elvis, M. et al. Atlas of quasar energy distributions. Astrophys. J. (Suppl.) 95, 1–68 (1995).21. Telfer, R. C., Zheng, W., Kriss, G. A. & Davidsen, A. F. The rest-frame extreme-ultraviolet spectralproperties of quasi-stellar objects. Astrophys. J. 565, 773–785 (2002).22. Pentericci, L. et al. VLT optical and near-infrared observations of the z ¼ 6.28 quasar SDSSJ1030 þ 0524. Astron. J. 123, 2151–2158 (2002).23. Heger, A. & Woosley, S. E. The nucleosynthetic signature of population III. Astrophys. J. 567, 532–543(2002).24. Arnett, A. Massive star evolution and SN 1987A. Astrophys. J. 383, 295–307 (1991).25. Cen, R. Implications of WMAP observations on the population III star formation processes.Astrophys. J. Lett. (submitted).26. Kogut, A. et al. Wilkinson Microwave Anisotropy Probe (WMAP) first year observations: TEpolarization. Astrophys. J. (submitted).27. Spergel, D. N. et al. First year Wilkinson Microwave Anisotropy Probe (WMAP) observations:determination of cosmological parameters. Astrophys. J. (submitted).28. Hu, E. M. et al. A redshiftz ¼ 6.56 galaxybehindthe clusterAbell 370. Astrophys. J. 568,L75–L79(2002).Acknowledgements The VLA is operated by the National Radio Astronomy Observatory(NRAO), a facility of the National Science Foundation (NSF), operated under co-operativeagreement by Associated Universities, Inc. (AUI). This work is based partly on observationscarried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS(France), MPG (Germany) and IGN (Spain). F.W. is a Jansky Fellow.Competing interests statement The authors declare that they have no competing financialinterests.Correspondence and requests for materials should be addressed to F.W. ([email protected])...............................................................Rotational actuators basedon carbon nanotubesA. M. Fennimore*, T. D. Yuzvinsky*, Wei-Qiang Han*, M. S. Fuhrer*†,J. Cumings*† & A. Zettl** Department of Physics, University of California at Berkeley, and MaterialsSciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, USA.............................................................................................................................................................................Nanostructures are of great interest not only for their basicscientific richness, but also because they have the potentialto revolutionize critical technologies. The miniaturization ofelectronic devices over the past century has profoundly affectedhuman communication, computation, manufacturing and trans-portation systems. True molecular-scale electronic devices arenow emerging that set the stage for future integrated nanoelec-tronics1. Recently, there have been dramatic parallel advances inthe


Rotational actuators based on carbon nanotubes

Download Rotational actuators based on carbon nanotubes
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Rotational actuators based on carbon nanotubes and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Rotational actuators based on carbon nanotubes 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?