DOC PREVIEW
MIT 15 093J - Large Scale Optimization

This preview shows page 1-2-3 out of 9 pages.

Save
View full document
Premium Document
Do you want full access? Go Premium and unlock all 9 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

15 093 Optimization Methods Lecture 9 Large Scale Optimization 1 Outline Slide 1 1 The idea of column generation 2 The cutting stock problem 3 Stochastic programming 2 Column Generation Slide 2 For x n and n large consider the LOP min c x s t Ax b x 0 Restricted problem min X ci xi X Ai xi b i I s t i I x 0 2 1 Two Key Ideas Slide 3 Generate columns Aj only as needed Calculate mini ci e ciently without enumerating all columns 3 The Cutting Stock Problem Slide 4 Company has a supply of large rolls of paper of width W bi rolls of width wi i 1 m need to be produced Example w 70 inches can be cut in 3 rolls of width w1 17 and 1 roll of width w2 15 waste 70 3 17 1 15 4 Slide 5 Given w1 wm and W there are many cutting patterns 3 1 and 2 2 for example 3 17 1 15 70 2 17 2 15 70 1 Pattern a1 am integers m X ai wi W i 1 3 1 Problem Slide 6 Given wi bi i 1 m bi number of rolls of width wi demanded and W width of large rolls Find how to cut the large rolls in order to minimize the number of rolls used 3 2 Concrete Example Slide 7 What is the solution for W 70 w1 21 w2 11 b1 40 b2 40 feasible patterns 2 2 3 0 0 6 Solution 1 2 2 20 patterns 20 rolls used Solution 2 3 0 12 0 6 9 2 2 2 patterns 23 rolls used Slide 8 W 70 w1 20 w2 11 b1 12 b2 17 Feasible patterns 10 20 30 01 11 21 02 0 1 0 0 4 4 5 6 x1 x15 of feasible patterns of the type min s t 1 2 2 2 0 3 1 0 1 3 0 6 respectively x1 x15 0 12 1 2 x2 x15 x1 6 17 0 0 x1 x15 0 Slide 9 12 3 0 0 4 1 Example 2 17 0 5 6 4 12 3 0 0 4 17 0 1 4 Any ideas 2 7 rolls used 9 rolls used 3 3 Formulation Slide 10 Decision variables xj number of rolls cut by pattern j characterized by vector Aj n P min xj j 1 b1 n P Aj xj j 1 bm xj 0 integer Slide 11 Huge number of variables Can we apply column generation that is generate the patterns Aj on the y 3 4 Algorithm Slide 12 Idea Generate feasible patterns as needed W 0 w1 0 W w2 1 Start with initial patterns 0 0 0 0 0 0 0 0 0 W w3 W 0 w4 Slide 13 2 Solve min x1 xm x1 A1 xm Am b xi 0 Slide 14 3 Compute reduced costs cj 1 p Aj for all patterns j If cj 0 current set of patterns optimal If cs 0 xs needs to enter basis How are we going to compute reduced costs cj 1 p Aj for all j huge number 3 3 4 1 Key Idea Slide 15 4 Solve m X z max i 1 m X s t p i ai wi ai W i 1 ai 0 integer This is the integer knapsack problem Slide 16 If z 1 1 p Aj 0 j current solution optimal If z 1 s 1 p As 0 Variable xs becomes basic i e a new pattern As will enter the basis Perform min ratio test and update the basis 3 5 Dynamic Programming Slide 17 F u max p1 a1 pm am s t w1 a1 wm am u ai 0 integer For u wmin F u 0 For u wmin F u max pi F u wi i 1 m Why 3 6 Example Slide 18 max 11x1 7x2 5x3 x4 s t 6x1 4x2 3x3 x4 25 xi 0 xi integer F 0 0 F 1 1 F 2 1 F 1 2 F 3 max 5 F 0 1 F 2 5 F 4 max 7 F 0 5 F 1 1 F 3 7 F 5 max 7 F 1 5 F 2 1 F 4 8 F 6 F 7 F 8 F 9 F 10 F u max 11 F 0 7 F 2 5 F 3 1 F 5 11 max 11 F 1 7 F 2 5 F 3 1 F 4 12 max 11 F 2 7 F 4 5 F 5 1 F 7 14 11 F 3 16 11 F 4 18 11 F u 6 16 u 11 4 Slide 19 F 25 11 F 19 11 11 F 13 11 11 11 F 7 33 12 45 x 4 0 0 1 4 Stochastic Programming 4 1 Example Steel lbs Molding machine hrs Assembly machine hrs Demand limit tools day Contribution to earnings 1000 units Slide 20 Wrenches 1 5 1 0 0 3 15 000 130 Pliers 1 0 1 0 0 5 16 000 100 Cap 27 000 21 000 9 000 Slide 21 max 130W 100P s t W 15 P 16 1 5W P 27 W P 21 0 3W 0 5P 9 W P 0 4 1 1 Random data Assembly capacity is random 8000 with probability 10 000 with probability Contribution from wrenches 160 with probability 90 4 1 2 with probability 1 2 1 2 Slide 22 1 2 1 2 Decisions Slide 23 Need to decide steel capacity in the current quarter Cost 58 1000lbs Soon after uncertainty will be resolved Next quarter company will decide production quantities 4 1 3 Formulation Slide 24 5 State 1 2 3 4 Cap 8 000 10 000 8 000 10 000 W contr 160 160 90 90 Decision Variables S steel capacity Pi Wi i 1 4 production plan under state i max s t Ass 1 Mol 1 Ste 1 W d 1 P d 1 Obj 1 4 1 4 Slide 25 58S 0 25Z1 0 25Z2 0 25Z3 0 25Z4 0 3W1 0 5P1 8 W1 P1 21 S 1 5W1 P1 0 W1 15 P1 16 Z1 160W1 100P1 0 Slide 26 Ass Mol Ste W d P d Obj 2 2 2 2 2 2 0 3W2 0 5P2 10 W2 P2 21 S 1 5W2 P2 0 W2 15 P2 16 Z2 160W2 100P2 0 Ass Mol Ste W d P d Obj 3 3 3 3 3 3 0 3W3 0 5P3 8 W3 P3 21 S 1 5W3 P3 0 W3 15 P3 16 Z3 90W3 100P3 0 Ass Mol Ste W d P d Obj 4 4 4 4 4 4 0 3W4 0 5P4 10 W4 P4 21 S 1 5W4 P4 0 W4 15 P4 16 Z4 90W4 100P4 0 S Wi Pi 0 Solution Slide 27 Slide 28 Slide 29 Solution S 27 250lb 1 2 3 4 Prob 0 25 0 25 0 25 0 25 Wi 15 …


View Full Document

MIT 15 093J - Large Scale Optimization

Download Large Scale Optimization
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Large Scale Optimization and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Large Scale Optimization and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?