DOC PREVIEW
ISU EE 524 - Optimal Filtering

This preview shows page 1-2-19-20 out of 20 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 20 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 20 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 20 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 20 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 20 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Optimal FilteringOptimal filtering is a means of adaptive extraction of a weak desired signalin the presence of noise and interfering signals.Mathematically: Givenx(n) = d(n) + v(n),estimate and extract d(n) from the current and past values of x(n).EE 524, # 10 1Optimal Filtering (cont.)Let the filter coefficients bew =w0w1...wN−1.Filter output:y(n) =N−1Xk=0w∗kx(n − k) = wHx(n) =bd(n),EE 524, # 10 2wherex(n) =x(n)x(n − 1)...x(n − N + 1).Omitting index n, we can writebd = wHx, x =x0x1...xN−1.EE 524, # 10 3Optimal Filtering (cont.)Minimize the Mean Square Error (MSE)MSE = E {|e|2} = E {|d − wHx|2}= E {(d − wHx)(d∗− xHw)}= E {|d|2} − wHE {xd∗} − E {dxH}w + wHE {xxH}w.minwMSE → ∂MSE/∂w = 0 → E {xxH}w − E {xd∗} = 0.R = E {xxH} correlation matrixr = E {xd∗}.Wiener-Hopf equation (see Hayes 7.2):Rw = r −→ wopt= R−1r.EE 524, # 10 4Wiener FilterThree common filters:1. general non-causal:H(z) =∞Xk=−∞hkz−k,2. general causal:H(z) =∞Xk=0hkz−k,3. finite impulse response (FIR):H(z) =N−1Xk=0hkz−k.EE 524, # 10 5Wiener FilterCase 1: Non-causal filter:MSE = E [|e(n)|2] = E {[d(n) −∞Xk=−∞hkx(n − k)][d(n) −∞Xl=−∞hlx(n − l)]∗}= rdd(0) −∞Xl=−∞h∗lrdx(l) −∞Xk=−∞hkrdx(k)∗+∞Xk=−∞∞Xl=−∞rxx(l −k)hkh∗l.Remark: for causal and FIR filte rs, only limits of sums differ.Let hi= αi+ jβi. ∂MSE/∂αi= 0, ∂MSE/∂βi= 0 ∀i =⇒rdx(i) =∞Xk=−∞hkrxx(i − k) ∀i.EE 524, # 10 6In Z-domainPdx(z) = H(z)Pxx(z),which is the optimal non-causal Wiener filter.Example: x(n) = d(n) + e(n),Pdd(z) =0.36(1 − 0.8z−1)(1 − 0.8z),Pee(z) = 1,d(n) and e(n) uncorrelated.EE 524, # 10 7Optimal filter?Pxx(z) = Pdd(z) + Pee(z)=0.36(1 − 0.8z−1)(1 − 0.8z)+ 1= 1.6(1 − 0.5z−1)(1 − 0.5z)(1 − 0.8z−1)(1 − 0.8z),rdx(z) = E [d(n + k)[d(n)∗+ e(n)∗]] = rdd(k)Pdx(z) = Pdd(z),H(z) =Pdx(z)Pxx(z)=0.361.6(1 − 0.5z−1)(1 − 0.5z),h(k) = 0.3(12)|k|.EE 524, # 10 8Case 2: Causal filter (7.3.2 in Hayes):MSE = E [|e(n)|2] = E {[d(n) −∞Xk=0hkx(n − k)][d(n) −∞Xl=0hlx(n − l)]∗}= rdd(0) −∞Xl=0h∗lrdx(l) −∞Xk=0hkrdx(k)∗+∞Xk=0∞Xl=0rxx(l −k)hkh∗l=⇒rdx(i) =∞Xk=0hkrxx(i − k) ∀i.LetB(z)B∗(1z∗) =1Pxx(z).EE 524, # 10 9Pick B(z) to be a stable, causal, minimum- phase system. ThenPdx(z) = H(z)B−1(z)| {z }causalB−∗(1z∗) =⇒H(z)B(z)= [Pdx(z)B∗(1z∗)]+,where[Y (z)]+= [∞Xk=−∞ykz−k]+=∞Xk=0ykz−k.=⇒ H(z) = B(z)[Pdx(z)B∗(1z∗)]+.EE 524, # 10 10Causal Filter: ExampleSame as before: x(n) = d(n) + e(n),Pdd(z) =0.36(1 − 0.8z−1)(1 − 0.8z),Pee(z) = 1,d(n) and e(n) uncorrelated.EE 524, # 10 11Optimal filter?Pdx(z) = Pdd(z),Pxx(z) = Pdd(z) + Pee(z)= 1.6(1 − 0.5z−1)(1 − 0.5z)(1 − 0.8z−1)(1 − 0.8z),B(z) =1√1.61 − 0.8z−11 − 0.5z−1stable and causal,Pdx(z)B∗(1z∗) =0.36(1 − 0.8z−1)(1 − 0.8z)1√1.61 − 0.8z1 − 0.5z=0.36√1.61(1 − 0.8z−1)(1 − 0.5z)=0.36√1.6h531 − 0.8z−1+56z1 − 0.5ziEE 524, # 10 12[Pdx(z)B∗(1z∗)]+=0.36√1.6531 − 0.8z−1H(z) = B(z)[Pdx(z)B∗(1z∗)]+=1√1.61 − 0.8z−11 − 0.5z−10.36√1.6531 − 0.8z−1= 0.37511 − 0.5z−1=⇒ h(k) =38(12)k, k = 0, 1, 2, . . .Case 3: FIR filter (done before):rdx(i) =N−1Xk=0hkrxx(i − k) ∀i.EE 524, # 10 13FIR Wiener Filter - GeneralizationTheorem 1. Assume thatxd∈ NµxµdCxxCxdCdxCdd.Then the posterior pdf of d given x, fd|x(d|x), is also Gaussian, withmoments given byE [d|x] = µd+WHz }| {CdxC−1xx(x − µx)Cd|x= Cdd− CdxC−1xxCxd.EE 524, # 10 14FIR Wiener Filter - GeneralizationConsider d = Aβ + ξ,y = Bβ + η, whereEξη= 0, covξη=V11V12V21V22.Also, assume E [β] = β0and cov ( β) = Γ. We wish to predict d given y.EE 524, # 10 15Theorem 2. Minimum Mean-Square Error (MMSE) Solution:bd = Aβ0+ C(y − Bβ0),where C = (AΓBH+ V12)(BΓBH+ V22)−1.MMSE:AΓAH+V11+C(BΓBH+V22)CH−(AΓBH+V12)CH−C(BΓAH+V21).EE 524, # 10 16Kalman FilterConsider a state-space model:x(t) = Ax(t − 1) + ξ(t),y(t) = Bx(t) + η(t),where• {ξ(t)} and η(t) are independent sequences of zero-mean random vectorswith covariances Σξand Ση, respectively;• ξ(t) and x(u) are independent for t > u and η(t) and x(u) areindependent for t ≥ u.We wish to predict x(t) given y(1), y(2), . . . y(t).EE 524, # 10 17Idea: Theorem 2 can be used to predict x(s) given y(t). We write suchpredictor asbx(s|t) and its (minimum) mean-square error as P (s|t).How to construct a recursive procedure?EE 524, # 10 18Kalman FilterAssume that we knowbx(t + 1|t) and its MMSE P (t + 1|t). We wish to findbx(t + 1|t + 1). Then, we can write the following model:x(t + 1) = βy(t + 1) = Bβ + η,where β0=bx(t + 1|t) and Γ = P (t + 1|t). This impliesbx(t + 1|t + 1) =bx(t + 1|t) + C(t + 1) · [y(t + 1) − Bbx(t + 1|t)],whereC(t + 1) = P (t + 1|t)BH[BP (t + 1|t)BH+ Ση]−1.AlsoP (t + 1|t + 1) = P (t + 1|t) −C(t + 1)[BP (t + 1|t)BH+ Ση]−1C(t + 1)H.EE 524, # 10 19Kalman FilterHow about findingbx(t + 1|t) based onbx(t|t)? Then, we can write thefollowing model:x(t + 1) = Aβ + ξ(t + 1),where β0=bx(t|t) and Γ = P (t|t). This impliesbx(t + 1|t) = Abx(t|t)P (t + 1|t) = AP (t|t)AH+ Σξ.Now we have all the equations for recursion!EE 524, # 10


View Full Document

ISU EE 524 - Optimal Filtering

Download Optimal Filtering
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Optimal Filtering and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Optimal Filtering 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?