DOC PREVIEW
SJSU EE 160 - problemset3

This preview shows page 1-2 out of 7 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 7 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 7 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 7 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

EE160. Spring 2003. San Jos´e State UniversityPROBLEM SET # 3 April 12, 20031. Textbook, problem 3.3The following figure shows the modulated signals for A =1andf0= 10. As it isobserved both signals have the same envelope but there is a phase reversal at t =1forthe second signal Am2(t)cos(2πf0t) (right plot). This discontinuity is shown clearly inthe next figure where we plotted Am2(t)cos(2πf0t)withf0=3.-1-0.8-0.6-0.4-0.200.20.40.60.8100.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-1-0.8-0.6-0.4-0.200.20.40.60.8100.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-1-0.8-0.6-0.4-0.200.20.40.60.800.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 22. Textbook, problem 3.4y(t)=x(t)+12x2(t)= m(t)+cos(2πfct)+12m2(t)+cos2(2πfct)+2m(t)cos(2πfct)= m(t)+cos(2πfct)+12m2(t)+14+14cos(2π2fct)+m(t)cos(2πfct)Taking the Fourier transform of the previous, we obtainY (f)=M(f)+12M(f ) M(f)+12(M(f − fc)+M(f + fc))+14δ(f )+12(δ(f − fc)+δ(f + fc)) +18(δ(f − 2fc)+δ(f +2fc))The next figure depicts the spectrum Y (f)1/4-2fc -fc -2W 2W fc 2fc1/81/23. Textbook, problem 3.5u(t)=m(t) · c(t)= 100(2 cos(2π2000t)+5cos(2π3000t)) cos(2πfct)Thus,U(f )=1002 δ(f − 2000) + δ(f + 2000) +52(δ(f − 3000) + δ(f + 3000)) [δ(f − 50000) + δ(f + 50000)]=50 δ(f − 52000) + δ(f − 48000) +52δ(f − 53000) +52δ(f − 47000)+δ(f + 52000) + δ(f + 48000) +52δ(f + 53000) +52δ(f + 47000)A plot of the spectrum of the modulated signal is given in the next figure.................................................................66 66 6666125500-53 -52 -48 -47 47 48 52 53 KHz4. Textbook, problem 3.151) The modulated signal isu(t) = 100[1 + m(t)] cos(2π8 × 105t)= 100 cos(2π8 × 105t) + 100 sin(2π103t)cos(2π8 × 105t)+500 cos(2π2 × 103t)cos(2π8 × 105t)= 100 cos(2π8 × 105t) + 50[sin(2π(103+8× 105)t) − sin(2π(8 × 105− 103)t)]+250[cos(2π(2 × 103+8× 105)t)+cos(2π(8 × 105− 2 × 103)t)]Taking the Fourier transform of the previous expression, we obtainU(f ) = 50[δ(f − 8 × 105)+δ(f +8× 105)]+25 1jδ(f − 8 × 105− 103) −1jδ(f +8× 105+103)−25 1jδ(f − 8 × 105+103) −1jδ(f +8× 105− 103)+125δ(f − 8 × 105− 2 × 103)+δ(f +8× 105+2× 103)+125δ(f − 8 × 105− 2 × 103)+δ(f +8× 105+2× 103)= 50[δ(f − 8 × 105)+δ(f +8× 105)]+25δ(f − 8 × 105− 103)e−jπ2+ δ(f +8× 105+103)ejπ2+25δ(f − 8 × 105+103)ejπ2+ δ(f +8× 105− 103)e−jπ2+125δ(f − 8 × 105− 2 × 103)+δ(f +8× 105+2× 103)+125δ(f − 8 × 105− 2 × 103)+δ(f +8× 105+2× 103)rrrr...........................................................................................................................................................666 6 666666|U(f )|∠U(f )−π2π2fc+2×103fc−2×103fc−2×103fc−103fc+103−fcfcfc+2×10325501252) The average power in the carrier isPcarrier=A2c2=10022= 5000The power in the sidebands isPsidebands=5022+5022+25022+25022= 650003) The message signal can be written asm(t)=sin(2π103t)+5cos(2π2 × 103t)= −10 sin(2π103t)+sin(2π103t)+5As it is seen the minimum value of m(t)is−6 and is achieved for sin(2π103t)=−1ort =34×103+1103k,withk ∈ Z. Hence, the modulation index is α =6.4) The power delivered to the load isPload=|u(t)|250=1002(1 + m(t))2cos2(2πfct)50The maximum absolute value of 1 + m(t)is6.025 and is achieved for sin(2π103t)=120or t =arcsin(120)2π103+k103.Since2× 103 fcthe peak power delivered to the load isapproximately equal tomax(Pload)=(100 × 6.025)250=72.60125. Textbook, problem 3.18The signal x(t)ism(t)+cos(2πf0t). The spectrum of this signal is X(f)=M(f )+12(δ(f − f0)+δ(f + f0)) and its bandwidth equals to Wx= f0. The signal y1(t)aftertheSquareLawDeviceisy1(t)=x2(t)=(m(t)+cos(2πf0t))2= m2(t)+cos2(2πf0t)+2m(t)cos(2πf0t)= m2(t)+12+12cos(2π2f0t)+2m(t)cos(2πf0t)The spectrum of this signal is given byY1(f)=M(f ) M(f )+12δ(f )+14(δ(f − 2f0)+δ(f +2f0)) + M(f − f0)+M(f + f0)and its bandwidth is W1=2f0. The bandpass filter will cut-off the low-frequencycomponents M (f )M(f )+12δ(f ) and the terms with the double frequency components14(δ(f − 2f0)+δ(f +2f0)). Thus the spectrum Y2(f)isgivenbyY2(f)=M(f − f0)+M(f + f0)and the bandwidth of y2(t)isW2=2W . The signal y3(t)isy3(t)=2m(t)cos2(2πf0t)=m(t)+m(t)cos(2πf0t)with spectrumY3(t)=M(f)+12(M(f − f0)+M(f + f0))and bandwidth W3= f0+W . The lowpass filter will eliminate the spectral components12(M(f − f0)+M(f + f0)), so that y4(t)=m(t) with spectrum Y4= M(f)andbandwidth W4= W . The next figure depicts the spectra of the signals x(t), y1(t),y2(t), y3(t)andy4(t)....................SSSQQQQQQSSSSSSSSSSSSSSSHHHHH66 66 6%%%eee1412−WW−WW f0+Wf0−W−f0+W−f0−W−f0+W−f0−Wf0−Wf0+W−2f0−f0−W −f0+W −2W 2Wf0−Wf0+W 2f0−WW−f0f0Y4(f)Y3(f)Y2(f)Y1(f)X(f)6. Textbook, problem 3.281) If the output of the narrowband FM modulator is,u(t)=A cos(2πf0t + φ(t))then the output of the upper frequency multiplier (×n1)isu1(t)=A cos(2πn1f0t + n1φ(t))After mixing with the output of the second frequency multiplier u2(t)=A cos(2πn2f0t)we obtain the signaly(t)=A2cos(2πn1f0t + n1φ(t)) cos(2πn2f0t)=A22(cos(2π(n1+ n2)f0+ n1φ(t)) + cos(2π(n1− n2)f0+ n1φ(t)))The bandwidth of the signal is W = 15 KHz, so the maximum frequency deviation is∆f = βfW =0.1 × 15 = 1.5 KHz. In order to achieve a frequency deviation of f =75KHz at the output of the wideband modulator, the frequency multiplier n1should beequal ton1=f∆f=751.5=50Using an up-converter the frequency modulated signal is given byy(t)=A22cos(2π(n1+ n2)f0+ n1φ(t))Since the carrier frequency fc=(n1+ n2)f0is 104 MHz, n2should be such that(n1+ n2)100 = 104 × 103=⇒ n1+ n2= 1040 or n2= 9902) The maximum allowable drift (df) of the 100 kHz oscillator should be such that(n1+ n2)df=2=⇒ df=21040= .0019 Hz6. Textbook, problem 3.311) The modulation index isβ =kfmax[|m(t)|]fm=∆fmaxfm=20 × 103104=2The modulated signal u(t) has the formu(t)=∞n=−∞AcJn(β)cos(2π(fc+ nfm)t + φn)=∞n=−∞100Jn(2) cos(2π(108+ n104)t + φn)The power of the unmodulated carrier signal is P =10022= 5000. The power in thefrequency component f = fc+ k104isPfc+kfm=1002J2k(2)2The next table shows the values of Jk(2), the frequency fc+kfm, the amplitude 100Jk(2)and the power Pfc+kfmfor various values of k.Index k Jk(2) Frequency Hz Amplitude 100Jk(2) Power Pfc+kfm0 .2239


View Full Document

SJSU EE 160 - problemset3

Download problemset3
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view problemset3 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view problemset3 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?