DOC PREVIEW
UA PTYS 554 - Study Notes

This preview shows page 1-2 out of 5 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

References and Notes1. M. Haruta, CATTECH 6, 102 (2002).2. M. Haruta, Catal. Today 36, 153 (1997).3. M. Valden, X. Lai, D. W. Goodman, Science 281, 1647 (1998).4. M. Valden, S. Pak, X. Lai, D. W. Goodman, Catal. Lett. 56,7 (1998).5. B. Yoon et al., Science 307, 403 (2005).6. K. Coulter, X. P. Xu, D. W. Goodman, J. Phys. Chem. B 98,1245 (1994).7. D. Tibiletti, A. Goguet, F. C. Meunier, J. P. Breen,R. Burch, Chem. Commun. 2004, 1636 (2004).8. G. A. Deluga, J. R. Salge, L. D. Schmidt, X. E. Verykios,Science 303, 993 (2004).9. D. Andreeva et al., Catal. Today 72, 51 (2002).10. X. S. Liu, O. Korotkikh, R. Farrauto, Appl. Catal. A 226,293 (2002).11. Q. Fu, A. Weber, M. Flytzani-Stephanopoulos, Catal. Lett.77, 87 (2001).12. S. Hilaire, X. Wang, T. Luo, R. J. Gorte, J. Wagner, Appl.Catal. A 215, 271 (2001).13. T. Bunluesin, R. J. Gorte, G. W. Graham, Appl. Catal. B15, 107 (1998).14. D. W. Goodman, Chem. Rev. 95, 523 (1995).15. R. Farrauto et al., Annu. Rev. Mater. Res. 33, 1 (2003).16. J. M. Schwartz, L. D. Schmidt, J. Catal. 138, 283 (1992).17. C. Bozo, N. Guilhaume, J.-M. Herrmann, J. Catal. 203,393 (2001).18. A. Sepulveda-Escribano, F. Coloma, F. Rodriguez-Reinoso,J. Catal. 178, 649 (1998).19. D. Kalakkad, A. K. Datye, H. Robota, Appl. Catal. B 1,191 (1992).20. S. H. Oh, P. J. Michell, R. M. Siewert, J. Catal. 132, 287(1991).21. L. Kundakovic, M. Flytzani-Stephanopoulos, J. Catal. 179,203 (1998).22. J. A. Rodriguez et al., Top. Catal. 44, 73 (2007).23. Z. Yan, S. Chinta, A. A. Mohamed, J. P. Fackler Jr.,D. W. Goodman, J. Am. Chem. Soc. 127, 1604 (2005).24. A. Vijay, G. Mills, H. Metiu, J. Chem. Phys. 118, 6536(2003).25. E. Wahlström et al., Phys. Rev. Lett. 90, 026101 (2003).26. A. Sanchez et al., J. Phys. Chem. A 103, 9573 (1999).27. J. A. Farmer, J. H. Baricuatro, C. T. Campbell, J. Phys.Chem. C, 10.1021/jp104593y (2010).28. M. Romeo, K. Bak, J. El Fallah, F. Le Normand, L. Hilaire,Surf. Interface Anal. 20, 508 (1993).29. To our knowledge, it is not possible to grow CeO2–x(111)films in this thickness range (1 to 4 nm) with x < 0.1 onPt(111).30. J. H. Larsen, J. T. Ranney, D. E. Starr, J. E. Musgrove,C. T. Campbell, Phys. Rev. B 63, 195410 (2001).31. J. A. Farmer, C. T. Campbell, L. Xu, G. Henkelman,J. Am. Chem. Soc. 131, 3098 (2009).32. J. A. Venables, Surf. Sci. 299–300, 798 (1994).33. C. T. Campbell, S. C. Parker , D. E. Starr, Science 298, 811(2002).34. S. C. Parker, C. T. Campbell, Phys. Rev. B 75, 035430(2007).35. J.-L. Lu, H.-J. Gao, S. Shaikhutdinov, H.-J. Freund, Surf.Sci. 600, 5004 (2006).36. J. H. Wang, M. L. Liu, M. C. Lin, Solid State Ion. 177, 939(2006).37. H.-J. Freund, Surf. Sci. 601, 1438 (2007).38. L. Giordano, M. Baistrocchi, G. Pacchioni, Phys. Rev. B72, 115403 (2005).39. J. A. Farmer, N. Ruzycki, J. F. Zhu, C. T. Campbell,Phys. Rev. B 80, 035418 (2009).40. D. Ricci, A. Bongiorno, G. Pacchioni, U. Landman,Phys. Rev. Lett. 97, 036106 (2006).41. D. E. Starr, D. J. Bald, J. E. Musgrove, J. T. Ranney,C. T. Campbell, J. Chem. Phys. 114, 3752 (2001).42. Supported by the U.S. Department of Energy, Office ofBasic Energy Sciences, Chemical Sciences Division, grantDE-FG02-96ER14630, and by, NSF Integrative GraduateEducation and Research Traineeship DGE-0504573 fromthe Center for Nanotechnology, University ofWashington ( J.A.F.).Supporting Online Materialwww.sciencemag.org/cgi/content/full/329/5994/933/DC1Materials and MethodsTable S1References3 May 2010; accepted 13 July 201010.1126/science.1191778Evidence of Recent Thrust Faulting onthe Moon Revealed by the LunarReconnaissance Orbiter CameraThomas R. Watters,1* Mark S. Robinson,2Ross A. Beyer,3,4Maria E. Banks,1James F. Bell III,5Matthew E. Pritchard,6Harald Hiesinger,7,8Carolyn H. van der Bogert,7Peter C. Thomas,9Elizabeth P. Turtle,10Nathan R. Williams6Lunar Reconnaissance Orbiter Camera images reveal previously undetected lobate thrust-faultscarps and associated meter-scale secondary tectonic landforms that include narrow extensionaltroughs or graben, splay faults, and multiple low-relief terraces. Lobate scarps are among theyoungest landforms on the Moon, based on their generally crisp appearance, lack of superposedlarge-diameter impact craters, and the existence of crosscut small-diameter impact craters.Identification of previously known scarps was limited to high-resolution Apollo Panoramic Cameraimages confined to the equatorial zone. Fourteen lobate scarps were identified, seven of which areat latitudes greater than T60°, indicating that the thrust faults are globally distributed. Thisdetection, coupled with the very young apparent age of the faults, suggests global late-stagecontraction of the Moon.Most large-scale crustal deformation onthe Moon is directly associated withthe nearside mare-filled basins and isexpressed as contractional wrinkle ridges and ex-tensional arcuate and linear rilles or graben (1, 2).Basin-radial and basin-concentric wrinkle ridgesoccur in the basin interiors, whereas graben arefound at basin margins and in adjacent highlands.The stresses that form this pattern of deformationare the result of loading from uncompensatedmare basalt fill that induces subsidence and down-ward flexure of the lithosphere (3). Lobate scarpsare tectonic landforms (4–7) that, unlike nearsidewrinkle ridges and graben, are generally foundoutside of mare-filled basins in the highlands andare the most common tectonic landform on thefarside (2). In contrast to basin-related wrinkleridges and graben, lobate scarps are relativelysmall-scale structures. They are generally linearor curvilinear asymmetric landforms with rela-tively steeply sloping scarp faces and are oftensegmented. Analogous large-scale lobate scarpsfound on Mercury (8–11) and Mars (12) can haveover a kilometer of relief; in contrast, known lunarlobate scarps generally have a maximum relief of<100 m (2, 4–7) and proportionately smallerlengths (less than tens of kilometers) (2, 7). Basedon their morphology and crosscutting relations,these structures are interpreted to be contractionallandforms resulting from low-angle thrust faulting(4–7, 13). Estimates of the fault displacement-length scaling relations and the linkage betweenindividual scarp segments further support theinterpretation that lobate scarps are the surfaceexpression of shallow thrust faults (2). Althoughmany lobate scarps are found in the highlands,some occur in mare basalts and others transitionfrom lobate scarps to wrinkle ridges (2, 5, 14).Because most previously identified


View Full Document
Download Study Notes
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Study Notes and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Study Notes 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?