Unformatted text preview:

Chapter Lecture NotesChapter 23: The Respiratory System Chapter Objectives PULMONARY VENTILATION 1. Define the three basic processes of respiration: pulmonary ventilation, external respiration, and internal respiration. 2. State Boyle’s law. 3. Discuss how Boyle’s law works through the action of the diaphragm and external intercostal muscles in the production of pressure gradients that move air into the lungs during inhalation. 4. List the accessory muscles that aid in forced inhalations. 5. Describe elastic recoil. 6. List the accessory muscles that aid in forced exhalations. 7. List the factors that control airway diameter and consequent air flow resistance. EXCHANGE OF OXYGEN AND CARBON DIOXIDE 8. Define partial pressure of a gas and how they affect gas exchange. 9. Explain the structure of the alveolar-capillary (respiratory) membrane and its function in the diffusion of respiratory gases. 10. Describe the cell and fluid compartments through which oxygen and carbon dioxide must diffuse to get from alveolar air to the tissue cells and out of the body. TRANSPORT OF OXYGEN AND CARBON DIOXIDE IN THE BLOOD 11. Discuss the methods for transporting oxygen in blood. 12. Discuss the effect of oxygen partial pressure on oxygen binding to and dissociating from hemoglobin. 13. Discuss factors other than the partial pressure of oxygen that influence the affinity with which hemoglobin binds oxygen. 14. Explain why it is necessary for fetal hemoglobin to have a greater affinity for oxygen than maternal hemoglobin. 15. Describe the three main forms by which carbon dioxide is transported in blood. 16. Explain how these forms change in the lungs versus the tissues.CONTROL OF RESPIRATION 17. Identify the three brain stem centers that regulate respiration. 18. Discuss the mechanism by which the medullary rhythmicity center establishes the basic cycle of ventilation. 19. Discuss the interactions between the pneumotaxic area and the rhythmicity center to initiate expiration and set the rate of breathing. 20. Describe how the apneustic area interacts with the rhythmicity center to control the transition from inspiration to expiration. 21. Explain the influences from higher CNS areas and peripheral receptors on breathing. 22. Discuss the negative feedback control system through which differing chemical conditions in the blood regulate the breathing pattern. Chapter Lecture Notes Introduction The respiratory system provides for gas exchange. Respiration is the exchange of gases between the atmosphere, blood, and cells. three basic steps ventilation (breathing) external (pulmonary) respiration internal (tissue) respiration Pulmonary Ventilation Inspiration (inhalation) is the process of bringing air into the lungs The movement of air into and out of the lungs depends on pressure changes governed in part by Boyle’s law.Boyle’s law - the volume of a gas varies inversely with pressure, assuming that temperature is constant (Fig 23.12) Inhalation occurs when alveolar (intrapulmonic) pressure falls below atmospheric pressure. (Fig 23.13 & 23.14) Contraction of the diaphragm, the main inspiratory muscle, and external intercostal muscles increases the size of the thoracic cavity The intrapleural (intrathoracic) pressure decreases so that the lungs expand Expansion of the lungs decreases alveolar pressure so that air moves along the pressure gradient from the atmosphere into the lungs During forced inhalation, accessory muscles of inspiration (sternocleidomastoids, scalenes, and pectoralis minor) are also used Expiration (exhalation) is the movement of air out of the lungs. Exhalation occurs when alveolar pressure is higher than atmospheric pressure. (Fig 23.15) Relaxation of the diaphragm and external intercostal muscles results in ELASTIC RECOIL of the chest wall and lungs. There is also an inward pull of surface tension due to the film of alveolar fluid Intrapleural pressure increases, lung volume decreases, and alveolar pressure increases so that air moves from the lungs to the atmosphere Exhalation becomes active during labored breathing and when air movement out of the lungs is impeded. Forced expiration employs contraction of the internal intercostals and abdominal musclesAir Flow Resistance Resistance to airflow depends upon airway size increase size of chest airways increase in diameter – decrease resistance contract smooth muscles in airways decreases in diameter – increase resistance Exchange of Oxygen and Carbon Dioxide The partial pressure of a gas is the pressure exerted by that gas in a mixture of gases. The total pressure of a mixture is calculated by simply adding all the partial pressures. It is symbolized by P. The amounts of O2 and CO2 vary in inspired (atmospheric), alveolar, and expired air. External Respiration (Fig 23.17) O2 and CO2 diffuse from areas of their higher partial pressures to areas of their lower partial pressures Gas exchange occurs across the alveolar-capillary membrane (Fig 23.11) Respiratory membrane = 1/2 micron thick 4 Layers of membrane to cross alveolar epithelial wall of type I cells alveolar epithelial basement membrane capillary basement membrane endothelial cells of capillary Rate of diffusion depends on Partial pressure differencesLarge surface area of our alveoli Diffusion distance (membrane thickness) is very small Solubility & molecular weight of gases O2 is a smaller molecule and diffuses somewhat faster CO2 dissolves 24X more easily in water so net outward diffusion of CO2 is much faster Internal Respiration (Fig 23.17) Exchange of gases between blood & tissues Conversion of oxygenated blood into deoxygenated Oxygen Transport 1.5% of the O2 is dissolved in the plasma in oxygenated blood (Fig 23.18) Only the dissolved O2 can diffuse into tissues 98.5% is carried with hemoglobin (Hb) inside red blood cells as oxyhemglobin (HbO2) in oxygenated blood PO2 - the most important factor that determines how much oxygen combines with hemoglobin The greater the PO2, the more oxygen will combine with hemoglobin, until the available hemoglobin molecules are saturated. Factors that promote dissociation (release) of O2 from hemoglobin Acidic environment (low pH) (Fig 23.20) High PCO2 results in low blood pH CO2 converts to carbonic acid & becomes H+ and bicarbonate ions & lowers pH. O2 left behind in needy tissuesIncreased temperature, within limits (Fig 23.21) Increased BPG (2, 3-biphosphoglycerate) levels


View Full Document

MCC BIO 202 - The Respiratory System

Download The Respiratory System
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view The Respiratory System and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view The Respiratory System 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?