Unformatted text preview:

EECS281B/STAT241B: Advanced Topics in Statistical Learning Spring 2009Lecture 13 — March 4Lecturer: Martin Wainwright Scribe: G ia Vinh Anh PhamNote: These lecture notes a re still rough, and have only have been mildly proofread. This is the danger environment.13.1 RecapTheorem 13.1 (Hoeffding). Say X1, . . . , Xnare independent random variables with ai≤Xi≤ biP"1nnXi=1(Xi− E[Xi])> ǫ#≤ 2 exp−2nǫ21nPni=1(bi− ai)2Proof: Using Chernoff inequality,P"1nnXi=1(Xi− E[Xi]) > ǫ#≤ exp(−λnǫ)E"exp λnXi=1(Xi− E[Xi])!#= exp(−λnǫ)E"nYi=1exp (λ(Xi− E[Xi]))#= exp(−λnǫ)nYi=1E [exp (λ(Xi− E[Xi]))]Since eλtis a convex function, and E [Xi− E[Xi]] = 0 we haveE [exp (λ(Xi− E[Xi]))] ≤−aibi− aiebiλ+bibi− aieaiλ= eaiλ1 +aibi− ai−aibi− aiebiλDefine g(u) = log(1 − c + ceu) − cu where c =−aibi−ai, then the above inequality is equivalenttoE [exp (λ(Xi− E[Xi]))] ≤ eg(λ(ai−bi)We note thatg( 0) = 0g′(u) =ceu1 − c + ceu− c ⇒ g′(0) = 0g′′(u) =ceu(1 − c)(1 − c + ceu)2≤14(ceu+ 1 − c)2(1 − c + ceu)2=14, ∀u13-1EECS281B/STAT241B Lecture 13 — March 4 Spring 2009Using Taylor series expansion we can writeg( u) = g(0) + g′(0)u +g′′(¯u)2u2≤18u2So,E [exp (λ(Xi− E[Xi]))] ≤ eg(λ(ai−bi)≤18λ2(ai− bi)2ThereforeP"1nnXi=1(Xi− E[Xi]) > ǫ#≤ exp −λnǫ +λ28nXi=1(bi− ai)2!≤ exp−2nǫ21nPni=1(bi− ai)2 13.2 Martingale inequalities(Way of relaxing independence assumptions)Definition: A sequence of integrable random variables Z1, Z2, . . . is a martingale ifE [Zn+1|Z1, . . . , Zn] = Zn, ∀n = 1, 2, . . .Example:Say V1, V2, . . . are independent zero mean ra ndom variables. Define Sn=Pni=1Vi. This is amartingale:E [Sn+1|S1, . . . , Sn] = E [Sn+ Vn+1|S1, . . . , Sn]= Sn+ E [Vn+1|S1, . . . , Sn]= Sn+ E [Vn+1] (by independence)= SnDefinition: A sequence of random variables V1, V2, . . . is a martingale difference sequence(MDS) ifE [Vn+1|V1, . . . , Vn] = 0, ∀n = 1, 2, . . .Proposition: If Z1, Z2, . . . is a martingale then {Vn|Vn+1= Zn+1− Zn} is a MDS.Lemma 13.2 (Azuma-Hoeffding). Say V1, V2, . . . is a martingale difference sequence withai≤ Vi≤ bi, i = 1, . . . , n. Then ∀ǫ > 0P"1nnXi=1Vi> ǫ#≤ 2 exp−2nǫ21nPni=1(bi− ai)213-2EECS281B/STAT241B Lecture 13 — March 4 Spring 2009Proof: Claim that ∀λ ∈ R , i = 1, 2 . . .:E [exp(λVi)|V1, . . . , Vi−1] ≤ expλ28(bi− ai)2(This is because Vi|V1, . . . , Vi−1is a zero-mean random va riable bounded in [ai, bi])Use Chernoff inequality again, ∀λ > 0P"1nnXi=1Vi> ǫ#≤ exp(−λnǫ)E"nYi=1exp (λVi)#= exp(−λnǫ)EV1...Vn−1"EVn"nYi=1exp (λVi) |V1, . . . , Vn−1##= exp(−λnǫ)EV1...Vn−1"n−1Yi=1exp (λVi) EVn[exp (λVn) |V1, . . . , Vn−1]#≤ exp(−λnǫ)E"n−1Yi=1exp (λVi)#expλ28(bn− an)2≤ . . . ≤ exp(−λ2nǫ) exp nXi=1λ28(bi− ai)2!.From this point, the remainder of the proof follows that of the ordinary Hoeffding inequalityfor sums of independent RVs. In particular, we optimize our bound over λ > 0, and therebyobtain thatP"1nnXi=1Vi> ǫ#≤ exp−2nǫ21nPni=1(bi− ai)2,as claimed. Reference book: Grimmett & Stirzaker, Probability & random processes has further back-ground on martingales and their properties.13.3 Complexity of function classesRecapIn proof of classical Glivenko-Cantelli theorem, needed to bound cardinality of{I(Z(1)≤ t), . . . , I(Zn≤ t)|t ∈ R}Saw this cardinality is at most n + 1.More generally, let A be a class of subsets in Rd.(In previous case, A = Ilef t= {(−∞, t]|t ∈ R})Definition13-3EECS281B/STAT241B Lecture 13 — March 4 Spring 20091. For Z(1), . . . , Z(n)∈ Rd, defineS(A, {Z(i)}ni=1) = card{A ∩ {Z(i)}ni=1|A ∈ A}Say that A shatters {Z(i)}ni=1if S(A, {Z(i)}ni=1) = 2n2. The nthshatter coefficient iss(A, n) = maxZ(1),...,Z(n)S(A, {Z(i)}ni=1)3. The Vapnik-Chernovenkis (VC) dimension of A isVA= sup{n ∈ N|s(A, n) = 2n}Examples:1. VIlef t= 12. Consider A = {(s, t]|s < t; s, t ∈ R}. ThenS(A, 1) = 2S(A, 2) = 22S(A, 3) = 7 < 23S(A, n) =n(n+1)2+ 1So VA= 2Theorem 13.3 (Vapnik-Chernovenkis). For any class of sets APsupA∈AˆPn(A) − P (A)> ǫ≤ 8s(A, n) exp−nǫ232whereˆPn(A) =1nPni=1I[Z(i)∈


View Full Document

Berkeley STAT C241B - Lecture Notes

Download Lecture Notes
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture Notes and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture Notes 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?