DOC PREVIEW
NCSU CSC (ECE) 574 - Basic Number Theory

This preview shows page 1-2-3-4 out of 12 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

CSC 474/574 Dr. Peng Ning 1Computer ScienceCSC 474/574Information Systems SecurityTopic 2.3 Basic Number TheoryCSC 474/574 Dr. Peng Ning 2Computer ScienceBasic Number Theory• We are talking about integers!• Divisor– We say that b≠0 divides a if a = mb for some m,denoted b|a. b is a divisor of a.– If a|1, then a = 1 or –1.– If a|b and b|a, then a = b or –b.– Any b≠0 divides 0.– If b|g and b|h, then b|(mg+nh) for arbitraryintegers m and n.CSC 474/574 Dr. Peng Ning 3Computer ScienceBasic Number Theory (Cont’d)• Prime numbers– An integer p > 1 is a prime number if its onlydivisors are 1, –1 , p, and –p.– Examples: 2, 3, 5, 7, 11, 13, 17, 19, 31,…• Any integer a > 1 can be factored in a uniqueway as– where each p1>p2>…>pt are prime numbers andwhere each ai>0.– Examples: 91=13×7, 11011=13 ×112 ×7.CSC 474/574 Dr. Peng Ning 4Computer ScienceBasic Number Theory (Cont’d)• Another view of a|b:– Let P be the set of all prime numbers– Represent a as– Represent b as– a|b means that ai ≤bi.CSC 474/574 Dr. Peng Ning 5Computer ScienceBasic Number Theory (Cont’d)• Greatest common divisor: gcd(a,b)– gcd(a,b) =max{k | k|a and k|b}– Examples• gcd(6,15)=3.• gcd(60,24)=gcd(60,-24)=12.• gcd(a,0) = a.– gcd(a,b) can be easily derived if we can factor a and b.• Relatively Prime Numbers– Integers a and b are relatively prime if gcd(a,b) = 1.– Example: 8 and 15 are relatively prime.CSC 474/574 Dr. Peng Ning 6Computer ScienceModulo Operator• Given any positive integer n and any integer a, wehave a = qn+r, where 0≤r<n and q=a/n.– We write r = a mod n.– The remainder r is often referred to as a residue.– Example:• 2 = 12 mod 5.• Two integer a and b are said to be congruent modulon if a mod n = b mod n.– We write a ≡ b mod n– Example:• 7 ≡ 12 mod 5.CSC 474/574 Dr. Peng Ning 7Computer ScienceModulo Operator (Cont’d)• Properties of modulo operator– a ≡ b mod n if n|(a – b)– (a mod n) = (b mod n) implies a ≡ b mod n.– a ≡ b mod n implies b ≡ a mod n.– a ≡ b mod n and b ≡ c mod n imply a ≡ c mod n.CSC 474/574 Dr. Peng Ning 8Computer ScienceModular Arithmetic• Observation:– The (mod n) operator maps all integers into the setof integers{0, 1, 2, …, (n-1)}.• Modular addition.– [(a mod n) + (b mod n)] mod n = (a+b) mod n• Modular subtraction.– [(a mod n) – (b mod n)] mod n = (a – b) mod n• Modular multiplication.– [(a mod n) × (b mod n)] mod n = (a × b) mod nCSC 474/574 Dr. Peng Ning 9Computer ScienceAn Exercise (n=5)• Addition • MultiplicationExponentiation9210 mod 5 = ____43210432104321043210CSC 474/574 Dr. Peng Ning 10Computer ScienceProperties of Modular Arithmetic• Zn={0, 1, …, (n-1)}• Commutative laws– (w + x) mod n = (x + w) mod n– (w × x) mod n = (x × w) mod n• Associative laws– [(w + x) + y] mod n = [w + (x + y)] mod n– [(w × x) × y] mod n = [w × (x × y)] mod n• Distributive law– [w × (x + y)] mod n = [(w × x)+(w × y)] mod n• Identities– (0 + w) mod n = w mod n– (1 × w) mod n = w mod n• Additive inverse (–w)– For each w ∈Zn, there exists a z such that w + z=0 mod n.CSC 474/574 Dr. Peng Ning 11Computer ScienceAbout Multiplicative Inverse• Not always exist– Example: There doesn’t exist a z such that 6 × z =1 mod 8.• An integer a ∈Zn has a multiplicative inverseif gcd(a, n) = 1.• In particular, if n is a prime number, then allelements in Zn have multiplicative inverse.24602460Residues42363024181260×676543210Z8CSC 474/574 Dr. Peng Ning 12Computer ScienceFermat’s Theorem• If p is prime and a is a positive integer notdivisible by p, then ap-1≡1 mod p.– Observation: {a mod p, 2a mod p, …, (p-1)a modp} = {1, 2, …, (p-1)}.– a ×2a ×.. ×(p-1)a ≡[(a mod p) ×(2a mod p) ×… ×((p-1)a mod p)] mod p– (p-1)! ×ap-1 ≡(p-1)! mod p– Thus, ap-1≡1 mod p.CSC 474/574 Dr. Peng Ning 13Computer ScienceTotient Function• Totient function ø(n): number of integers lessthan n and relatively prime to n– If n is prime, ø(n)=n-1– If n=p∗q, and p, q are primes, ø(n)=(p-1)(q-1)• Examples:– ø(7)=____– ø(21)=____CSC 474/574 Dr. Peng Ning 14Computer ScienceEuler’s Theorem• For every a and n that are relatively prime,aø(n) ≡1 mod n.– Proof leaves as an exercise.• Examples– a=3, n=10, ø(10)= ____ , 3ø(10) mod 10 = ____– a=2, n=11, ø(11)=____, 2ø(11) mod 11=____.CSC 474/574 Dr. Peng Ning 15Computer ScienceModular Exponentiation• xy mod n = xy mod ø(n) mod n• if y = 1 mod ø(n) then xy mod n = x mod n• Example:– 2100 mod 33 = ____CSC 474/574 Dr. Peng Ning 16Computer ScienceEuclid’s Algorithm• Observation– gcd(a, b) = gcd(b, a mod b)• Eulid (d, f), d > f > 0.1. X←d; Y←f2. If Y = 0 return X=gcd(d, f)3. R = X mod Y4. X ←Y5. Y ←R6. Goto 2CSC 474/574 Dr. Peng Ning 17Computer ScienceExtended Euclid Algorithm• Extended Euclid (d, f)1. (X1, X2, X3) ←(1,0,f); (Y1, Y2, Y3) ←(0,1,d)2. If Y3=0 return X3=gcd (d, f); no inverse3. If Y3=1 return Y3=gcd (d, f); Y2=d−1 mod f4. Q=X3/Y35. (T1, T2, T3) ←(X1 − QY1, X2 − QY2, X3 − QY3)6. (X1, X2, X3) ←(Y1, Y2, Y3)7. (Y1, Y2, Y3) ←(T1, T2, T3)8. Goto 2• Observation– fX1 + dX2 = X3; fY1 + dY2 = Y3– If Y3 = 1, then fY1 + dY2 = 1– Y2 = d−1 mod fCSC 474/574 Dr. Peng Ning 18Computer ScienceThe Power of An Integer Modulo n• Consider the following expression• am≡1 mod n• If a and n are relatively prime, then there is at leastone integer m that satisfies the above equation.– That is, the Euler’s totient function φ(n).• The least positive exponent m for which the aboveequation holds is referred to as:– The order of a (mod n)– The exponent to which a belongs (mod n)– The length of the period generated by a.CSC 474/574 Dr. Peng Ning 19Computer ScienceUnderstanding The Order of a (mod n)• Powers of Integers Modulo 19118118118118118118118118118117411166759117411166759112111878112111878112111878111711171117111711171117156111797164156111797164110512631115171891471316842111111111111111111a18a17a16a15a14a13a12a11a10a9a8a7a6a5a4a3a2aCSC 474/574 Dr. Peng Ning 20Computer ScienceObservations in The Previous Table• All sequences end in 1.• The length of a sequence divides φ(19) = 18.– Lengths: 1, 2, 3, 6, 9, 18.• Some of the sequences are of length 18.– The base integer a generates (via powers) allnonzero integers modulo 19.CSC 474/574 Dr. Peng Ning 21Computer


View Full Document

NCSU CSC (ECE) 574 - Basic Number Theory

Download Basic Number Theory
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Basic Number Theory and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Basic Number Theory 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?