DOC PREVIEW
MIT 18 085 - Solutions - Problem Set 8

This preview shows page 1-2-3-4 out of 11 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 11 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 11 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 11 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 11 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 11 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

MIT OpenCourseWare http://ocw.mit.edu 18.085 Computational Science and Engineering IFall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.� � 18.085 - Mathematical Methods for Engineers I Prof. Gilbert Strang Solutions - Problem Set 8 Section 4.1 ⎡ � ⎣1 , |x| < 2 3) f(x) = � ⎤0 , < x < � 2 | | f(x) x −� −�/2 �/2 � 1 � � 1 � � a0 = f(x) dx bk = f(x) sin kx dx 2� −� � −� 1 � �/2 1 � �/2 = 1 dx = sin kx dx 2� −�/2 · � −�/2 1 1 � cos kx ��/2 = [�/2 + �/2] = 2� � − k −�/2 1 1 � k� � k� �� = 2 # = �k − cos 2 + cos − 2 = 0 # 1 � � ak = f(x) cos kx dx � −� 1 � �/2 = cos kx dx � −�/2 1 � sin kx ��/2 = � k −�/2 1 � k� ⎦ � �� = �k sin 2 − sin k − 2 2 � k� � = sin �k 2 # 1� � � 10) Boundary condition for Laplace’s equation 1 , 0 < λ < � u0 = 0 , −� < λ < 0 1 � � 1 1 a0 = 1 dx = (� − 0) = 2� 0 2� 1 � � 1 � �� sin k� ak = � 0 cos kx dx = �k sin kx = �k = 0 �k0 1 � � 1 � �� 1 bk = � 0 sin kx dx = �k − cos kx = �k [1 − cos k�]0 ⎡ 2 ⎣ , k odd = �k ⎤0 , k even 2 � sin 3x sin 5x � � u0(λ) = + sin x + + + � 3 5 ··· 1 2 � r3 sin 3x r5 sin 5x � ∀ u(r, λ) = + r sin λ + + + 2 � 3 5 ··· # At origin, r = 0, λ = 0 2 u(0, 0) = + [0 + 0 . . .]2 � 1 = 2 # 13) width h = �, F (x) a) �|F (x)| 2dx � �/2 = 12dx −�/2 = � # 1 x −� −�/2 �/2 � 1 � � b) Ck = F (x) e −ikx dx 2� −� 1 � �/2 −ikx dx= e 2� −�/2 1 � e−ikx ��/2 = 2� −ik −�/2 1 � 1 �� −ik�/2 ik�/2� = −e + e2� ik 1 � k� � = 2i sin 2�ki 2 2 1 2 1 2� � � � � � � � � � � � � �� � = � # � 1 sin(k�/2) = 2� (k/2) = ⎡ ⎥⎥⎥⎥⎥⎣ ⎥⎥⎥⎥⎥⎤ 1 , k = ±1, 5, 9, . . . �k 1 − �k , k = ±3, 7, 11, . . . 0 , k even 1 C0 = F (x) dx 2� −� 1 � �/2 = 1dx 2� −�/2 1 = [�/2 + �/2]2� 1 = 2 # c) F (x)2 dx −� | |2 2 2= 2� |C0| C1C−1+ + +| | | | ··· �� 1�2 � 1 �2 �2 � 1 �2 �21 1 = 2� 2+ � + − � +3� + − 3� + ··· � 4 1 1 = + 1 + + + 2 � 32 52 ··· � 4 = + �2� 2 � 8 Observed from ramp series eqn (15) pg321 1 � � If h = 2�, C0 = 1 dx = 1 2� −� 1 � � −ikx dx = 1 sin(k�)Ck = e = 0 for all k 2� −� 2� (k/2) � F (x) = 1 a constant function # 18) Heat equation ut = uxx point source u(x, 0) = �(x) with free boundary conditions u �(�, t) = u �(−�, t) = 0 These boundary conditions require cosine series ⎪ u(x, t) = b0(t) + bn(t) cos nx n=1 3� � � � � ���� ���� ���� � � Substitute into heat equation b0�(t) + ⎪ b � (t) cos nx = − ⎪ (t)n2 cos nxnbnn=1 n=1 2since b0�(t) = 0, bn(t) = e−n tbn(0), b0(t) = constant Initial condition ⎪ 1 1 b0(0) + bn(0) cos nx = �(x) = + [cos x + cos 2x + cos 3x + ] n=1 2� � ··· Comparing coefficient 1 1 b0(0) = , bn(0) = 2� � 1 b0(t) = since b0 is a constant 2� 21 ⎪ 1 −n t � u(x, t) = + e cos nx #2� n=1 � Section 4.2 a) F = quarter square = 1 , 0 � x � �, 0 � y � � 0 , −� < x < 0 or − � < y < 0 F (x, y) �y 1 � x 0 �−� −� � 1 �2 � � � � Cmn = F (x, y)e −imx e −iny dx dy 2� −� −� � 1 �2 � � � � = e −imx e −iny dx dy 2� 0 0 � 1 �2 � � � e−imx �� = e −iny dy 2� −im00 = � 1 �2 � � e −iny � 1 ��1 − e −im�� dy2� 0 im � 1 �2 � 1 � � −iny �� �−im�� e= 2� im 1 − e−in 0 � 1 �2 � 1 �� 1 � �−im���−in�� = 1 − e 1 − e2� im in 4� � For m, n = 0≥⎡ 1 Cmn = ⎣ − �2mn , for m and n both odd ⎤ 0 , for m even or n even � 1 �2 � � � � C� = 1 dx dy2� 0 0 � 1 �2 = �2 2� 1 = 4 # � 1 �2 � � � � C0n = e −iny dx dy 2� 0 0 � 1 �2 � � � e−iny �� = dx 2� 0 −in 0 � 1 �2 � 1 �� � �−in� � =2� in 0 1 − e dx � 1 �2 ⎦ � ��−in� � = 1 − e2� in ⎡ 1 ⎥, for n odd⎣ 2�in= ⎥⎤ 0 , for n even # � 1 �2 � � � � Cm0 = e −imy dx dy 2� 0 0 ⎡ 1 ⎥, for m odd⎣ 2�im= ⎥⎤ 0 , for m even # b) F = checkerboard = 1 if xy > 0 − � < x � � 0 if xy < 0 − � < y � � y � � � � � � � � � � � � � � � � � � � � � � ����� � � � � � � � � � ��� �� � � � � � � � � ��� ��� � � � � � � � � ����� ���−� −� � F = 1 x 5� 1 �2 � � � � Cmn = F (x, y) e −imx e −iny dx dy 2� −� −� � 1 …


View Full Document

MIT 18 085 - Solutions - Problem Set 8

Download Solutions - Problem Set 8
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Solutions - Problem Set 8 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Solutions - Problem Set 8 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?