DOC PREVIEW
Field- and Shear-Driven Collective Phenomena in Suspensions

This preview shows page 1-2-20-21 out of 21 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 21 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 21 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 21 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 21 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 21 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

FieldField--and Shearand Shear--Driven Collective Phenomena in Driven Collective Phenomena in Suspensions Suspensions Boris KhusidNew Jersey Institute of TechnologyAndreas AcrivosThe Levich Institute at CUNYSupportNASA, NSF, DARPADielectrophoresis Dielectrophoresis The force acting on a particle subject to a gradient electric field is Electrophoresis is the motion of a charged particle in a DC field Dielectrophoresis is the motion of a neutral particle in gradient DC and AC fieldsThe time average dielectrophoretic force in an AC fieldEPEF)(Qe∇⋅+=( )23rms)Re(a2f0EFd∇ωβεπε=PositivedielectrophoresisNegativedielectrophoresis0)Re(>β0)Re(<β()()( ) ( )ωε+ωεωε−ωε=β*f*p*f*p2FieldField--induced Phase Transitioninduced Phase Transition0E=TkWBel≥A variety of orderedaggregation patternsA homogeneous random arrangement of particlesElectrorheological fluidsDussaud, Khusid, Acrivos, J Appl Phys, 88, 2000Measuring the Particle Polarization Measuring the Particle Polarization Validated the equation for dielectrophoretic force for E~ 1 kV/mm Dielectric spectroscopy for measuring particle polarization for E~ 1 V/mm The Maxwell-Wagner modelDielectric Spectroscopy DS measures the relation between time-varying voltage and currentthrough a samplesampleE~1 V/mmNJIT W.M. Keck Laboratory()( )( )ωβ=ε+ωεε−ωεc2c,c,*f*s*f*sMicroscopic theory for field-induced phase transitionsFieldField--induced Phase Separationinduced Phase SeparationPhase Diagramrelative field strength UNSTABLEMETASTABLEspinodalcoexistencecurvea=1 µma=1 nmparticle volume fractioncrϕϕTkvEBp2f0εε=λKhusid & Acrivos, Phys Rev E, 1995, 1996, 1999cccr10V0VSandia’s SwIFTTMprocess monolithic multilayer device10 Vptp, 15-30 MHz()()()Lµm570Hµm6Wµm40 ××FlowElectrodes0V10Vµm6Dielectrophoretic gates2rmsE∇GateDielectrophoretic Particle ConcentratorDielectrophoretic Particle ConcentratorSource: Bennett, Khusid, Galambos, James, Okandan, TRANSDUCERS'03, Boston, MAExperimental ResultsExperimental Resultspolystyrene spherical beads in DI water, 0.1% (v/v) µm10.27i0.45ß−−=Particle polarization Flow rate 0.24 pL/s to 9.6 pL/s; Re~10–5-10–3Source: Bennett, Khusid, Galambos, James, Okandan, Jacqmin, Acrivos, ApplPhys Lett, 2003Dielectrophoretic gatesFlowElectrodes10V0Vµm6dF2rmsE∇10Vptp, 30 MHzFlowGate10s70s120s 180sm20µPhase transitionFlowing Heterogeneous MixtureBeads and bacterial cells (heat-killed staphylococcus aureus)10 Vptp, 15 MHz Flow rate 0.24 pL/s to 9.6 pL/sSource: Bennett, Khusid, Galambos, James, Okandan, Jacqmin, Acrivos, ApplPhys Lett, 2003m20µBeadsCellsFlowElectroElectro--hydrodynamic Modelhydrodynamic ModelSuspension flowChemical potential (Phys Rev E, 1995-9)2cdcdfvTk2ts00pBpcEω∂ε′∂ε−=µ()0*=∇ωrD()0*=×∇ωrE()**s0*c,ωωωεε= EDQuasi-steady electrodynamic equations0=∇v( )gsvvvfppvissccptρ−ρ+µ∇−∇+−∇=∇+∂∂ρParticle balance( )0ctcp=+∇+∂∂jv∂∂+∂∂η=ijjisvisijxvxvs2mfscc1c5.11−+η=η()( )[ ]gjfppsp2pa6vc1cρ−ρ+µ∇−ηπ−=Shear stress( )2*221rEEω=ViscosityElectric displacementEntropic factor( ) ( )[ ]∫−+−=c00dcc1Zc1clncfThe particle polarization can be measured at low fields)Re(βModelingModeling0.1%(v/v)-suspensionFlow rate 8.64 pL/sVoltage 10Vptp10s 10s70s 70s180s 180s120s 120sFlow velocity Particle velocityAverage flow velocity 36 µm/ssm8.49 µsm2.45 µsm3.106 µsm8.78 µsm4.110 µsm4.151 µsm9.139 µsm6.171 µ1, concentration2, field strength8.73%45.4%56.4%Two bolusesSingle bolusDussaud, Khusid & Acrivos, J Appl Phys., 88, 2000Electric Field Configuration Electric Field Configuration 0y=∂ϕ∂0y=∂ϕ∂Computational cell80 mm3 mm160 mmElectric fieldElectrodes+/-xyFlow0x=∂ϕ∂0x=∂ϕ∂1=ϕ1=ϕ0=ϕ02=ϕ∇0=ϕElectrodesSuspensionElectricElectric--field Strengthfield StrengthLog E2(Vrms/d)2Neutrally buoyant suspensionPolyalphaolefin spheres (0.92 g/cm3 , 90 µm) in corn oil (0.92 g/cm3, 0.06 Pa·s, eps=2.2)()( )( )ωϕβ=ε+ϕωεε−ϕωε*f*s*f*s2,,The Maxwell-Wagner model15.0)Re(−=βfor 100-1000 HzParticle polarization in low field ~ 1V/mm Channel cross-sectionLow Field Region3 mmd=2mmGR HVHVSource: Kumar, Qiu, Khusid, Jacqmin, Acrivos, Phys. Rev. E, 20045kv, 100Hz, without flowFieldField--induced Segregationinduced Segregation0s 45s90s300s150s2325sGRHVGRHVGRHV3.6mmVrms/d =2.5 kV/mmTop view, 10%Neutrally buoyant polyalphaolefinspheres in corn oil 15.0)Re(−=βfor 100-1000 HzSource: Kumar, Qiu, Khusid, Jacqmin, Acrivos, Phys. Rev. E, 20045kV, 100Hz, without flow10%,38min15%,30min20%,28min25%,36min30%,30min5%,41minGRHVGRHVGRHVGRHVGRHVGRHV3.6mmFront FormationFront FormationTop viewmmkVrms2.5d=VSource: Kumar, Qiu, Khusid, Jacqmin, Acrivos, Phys. Rev. E, 2004Comparison with Experiments0 10 20 30 40 50 60 70 80 90 1001101201300.150.200.250.300.350.400.450.500.5515%10%5%Front Position, L/D5% (5kV/2kHz)5% (3kV/2kHz)10% (5kV/100Hz)10% (3kV/100Hz)15% (5kV/2kHz)15% (3kV/2kHz)GRHVD=3.6mmL( )( )2rmsf02f4dVRead3ωβεεη=τDielectrophoretic timed/t τSource: Kumar, Qiu, Khusid, Jacqmin, Acrivos, Phys. Rev. E, 2004Field Strength and Frequency Effects5kV, 100Hzt=20.5min4.63td=τ3kV, 2000Hzt=52.5min6.58td=τ3kV, 100Hzt=54.5min8.60td=τTop view, 10% suspensionSource: Kumar, Qiu, Khusid, Jacqmin, Acrivos, Phys. Rev. E, 2004MultiMulti--Channel ApparatusChannel Apparatuselectrodesinletoutlet150 chambers on the 4” waferH = 30 µmSilicon WaferAl electrodesTransparentGlass CoverinletoutletinletoutletElectrodesparallel tothe flowElectrodesperpendicularto the flow3 mm6 mmElectrode spacing = 2, 5, 10 µmNJITNJITSource: Markarian, Yeksel, Khusid, Farmer, Acrivos, Appl Phys Lett, 82, 2003Model for Dilute SuspensionsModel for Dilute Suspensions§ The balance of drag, dielectrophoretic, and gravitationalforces§ The field-induced particle displacementur=dtd00trr==( )( )evu ga34E)Re(a2a63fp2rms3f0fρ−ρπ+∇βεπε=−πηfQiu, Markarian, Khusid, Acrivos, J Appl Phys, 92, 2002 Dussaud, Khusid, Acrivos, J Appl Phys, 88, 2000The particle polarization can be measured at low fields)Re(β§ The asymptotic expression for the spinodal1≈Ψϕλω()2Re3~ βΨωTkvEBp2f0εε=λ0 secZXGRHVHVHVHVGRGRGR160 µm900 secGRHVHVHVHVGRGRGRExperimental Results Experimental Results 10 µmFlowAC Field: 20V, 1kHzelectrodes à lightGL = GL0 particles à darkGL < GL0 240 µm0.1% (v/v); Q = 0.05 µl/min; Re=10–5Measurement ofGray Level


Field- and Shear-Driven Collective Phenomena in Suspensions

Download Field- and Shear-Driven Collective Phenomena in Suspensions
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Field- and Shear-Driven Collective Phenomena in Suspensions and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Field- and Shear-Driven Collective Phenomena in Suspensions 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?