DOC PREVIEW
MIT 5 74 - Nonlinear Response Function

This preview shows page 1-2 out of 5 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

MIT OpenCourseWarehttp://ocw.mit.edu 5.74 Introductory Quantum Mechanics II Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.Nonlinear Spectroscopy Problems, Part 1 Spring 2009 1. Nonlinear Response Function In analogy to the derivation of the linear response function, derive the quantum form of the second-order (nonlinear) response function. 2. Second Order Response Functions Draw the Feynman and ladder diagrams for the two correlation functions of the second order nonlinear response, Q1 and Q2, and write expressions for the phenomenological time-domain response functions of these systems and corresponding frequency-domain nonlinear susceptibility. Assume that you have a three level system for which the eigenstates of the system Hamiltonian are a , b , and c , and also assume that Ea < Eb < Ec.We want to describe the behavior of two experiments shown here. Two pulses, both with frequency ω10 = Ω ω21= Ω−δΩ 5.74, NLS Problem Set Page 2 3. Nonlinear Experiments on an Anharmonic Vibration Here we will consider two time-domain third-order nonlinear experiments on an anharmonic vibration. For high vibrational 2 frequencies we will only occupy the ground state at equilibrium (ρeq = |0><0| ), and the response can be represented by a three level system 1 for the n=0, 1, and 2 vibrational states. For a weakly anharmonic oscillator, we will have only a very small shift between the 0 fundamental transition frequency ω10 = Ω and the n=1→2 transition, ω21=Ω−δΩ. ω resonant with the Δn = ±1 transitions (ω ≈ ω10 ≈ ω21) and separated by τ are crossed at a small angle, to generate two background free signals after the sample. The field E1 incident along k1 preceeds the second pulse E2 along k2. On a plane after the sample the two signals k+ and k− are observed as equally spaced spots on either side of the transmitted beams. k+ lies next to the transmitted k1. (a) Give the wavevector matching condition that leads to the signals radiated in the k+ and k− directions. What is the frequency of each radiated signal? (b) Draw all Feynmann and Ladder diagrams that contribute to the k+ and k− signals, assuming that the system starts in the ground state. (c) Write the correlation function corresponding to each diagram, assuming a phenomenological damping for propagation under H0. (d) Now let’s look more carefully at the signal k−, for an inhomogeneously broadened system. Assume that the homogeneous damping of all coherences is Γ=Γ10 = Γ21, and there are a Gaussian distribution of resonance frequencies5.74, NLS Problem Set Page 3 ⎛ ⎜ (ω10 −ω10 ( ) =expZ ω10 ⎜− 2Δ2 )2 ⎟⎞⎟⎜ ⎟⎝ ⎠ Also, for each member of the ensemble, ()()ω δ .ω21 i = 10 i −ΩThe integrated signal observed by a photodetector as a function of the pulse separation τ is 23S τ dτ P()(ττ ,3 ).()∝∫∞ 30 Assuming that the experiment is performed with delta function pulses, derive an analytical expression for S(τ), and explain and interpret the features of this signal for the limits Δ>>Γ and Δ<<Γ. (To understand what you see it might help to plot P(3)as a function of τ1 and τ3.) You can assume ω≈Ω> δ. Also from harmonic oscillator selection rules, we can > Ω>Γsay μ21 = 2μ10.Nonlinear Spectroscopy Problems, Part 2 Spring 2009 4. 2D Spectrum of Coupled Oscillators Calculate the 2D spectrum obtained from a third-order nonlinear experiment for a degenerate pair of coupled anharmonic vibrations. Imagine that you have two anharmonic oscillators described by the with vibrational levels in problem 3. For each oscillator, the transition energy for the v=0-1 transition is ε and the 1-2 transition is ε −Ω . Then, these are coupled through a Va† †linear coupling of magnitude V: ( 12a + a1a2 ). Similar to before, we take Ω,V << ε . (a) Obtain the v=0,1,2 energy eigenvalues for the coupled oscillators. First explain why the matrix form of the Hamiltonian can be written as ⎛0 ⎞ ⎜ε V ⎟ ⎜ ⎟ ⎜ V ε⎟ H0 =⎜ ⎟.⎜ 2ε −Ω 2V⎟ ⎜ ⎟ ⎜ 2ε −Ω 2V⎟ ⎜ 2V 2V 2ε ⎟⎠⎝ Where the rows refer to the states 0,0, 0,1 , 1,0, 0,2, 2,0, 1,1 . 2 The states refer to the quantum number for each oscillator, and the 11,1 state is the combination band in which one quantum of excitation is in each oscillator. Show how the states correspond to the bands shown to the right. 0 (b) Considering allowed resonances between the adjacent bands, draw the ladder diagrams that correspond to the R2 and R3 (rephasing) terms of the third-order nonlinear response. You can assume that only the following transitions (which change state by one quantum) are allowed: μ00,10 , μ00,01 , μ10,20 , μ01,02 , μ01,11 , μ10,11 . Also, you may assume that 2μ00,10 =μ01,02 , 2μ00,01 =μ10,20 , and μ01,11 =μ10,11 . Also write out the response obtained for each diagram setting τ2=0. (c) Fourier transform the responses in both the τ1 and τ3 variables, setting Γij→0. This leads to each diagram contributing to a delta-function peak in a two dimensional spectrum plotted as a function of ω1 and ω3. Show where the peaks are and how their positions are dictated by the parameters ε, V and


View Full Document
Download Nonlinear Response Function
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Nonlinear Response Function and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Nonlinear Response Function 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?