DOC PREVIEW
CMU CS 10601 - Notes

This preview shows page 1-2-3 out of 10 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 10 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 10 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 10 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 10 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

1 Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University October 13, 2011 Today: • Graphical models • Bayes Nets: • Conditional independencies • Inference • Learning Readings: Required: • Bishop chapter 8, through 8.2 Conditional Independence, Revisited • We said: – Each node is conditionally independent of its non-descendents, given its immediate parents. • Does this rule give us all of the conditional independence relations implied by the Bayes network? – No! – E.g., X1 and X4 are conditionally indep given {X2, X3} – But X1 and X4 not conditionally indep given X3 – For this, we need to understand D-separation X1 X4 X2 X32 prove A cond indep of B given C? ie., p(a,b|c) = p(a|c) p(b|c) Easy Network 1: Head to Tail A C B let’s use p(a,b) as shorthand for p(A=a, B=b) prove A cond indep of B given C? ie., p(a,b|c) = p(a|c) p(b|c) Easy Network 2: Tail to Tail A C B let’s use p(a,b) as shorthand for p(A=a, B=b)3 prove A cond indep of B given C? NO! Summary: • p(a,b)=p(a)p(b) • p(a,b|c) NotEqual p(a|c)p(b|c) Explaining away. e.g., • A=earthquake • B=breakIn • C=motionAlarm Easy Network 3: Head to Head A C B X and Y are conditionally independent given Z, if and only if X and Y are D-separated by Z. Suppose we have three sets of random variables: X, Y and Z X and Y are D-separated by Z (and therefore conditionally indep, given Z) iff every path from every variable in X to every variable in Y is blocked A path from variable A to variable B is blocked if it includes a node such that either 1. arrows on the path meet either head-to-tail or tail-to-tail at the node and this node is in Z 2. the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, is in Z [Bishop, 8.2.2]4 X and Y are D-separated by Z (and therefore conditionally indep, given Z) iff every path from every variable in X to every variable in Y is blocked A path from variable A to variable B is blocked if it includes a node such that either 1. arrows on the path meet either head-to-tail or tail-to-tail at the node and this node is in Z 2. the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, is in Z X1 indep of X3 given X2? X3 indep of X1 given X2? X4 indep of X1 given X2? X1 X4 X2 X3 X and Y are D-separated by Z (and therefore conditionally indep, given Z) iff every path from any variable in X to any variable in Y is blocked by Z A path from variable A to variable B is blocked by Z if it includes a node such that either 1. arrows on the path meet either head-to-tail or tail-to-tail at the node and this node is in Z 2. the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, is in Z X4 indep of X1 given X3? X4 indep of X1 given {X3, X2}? X4 indep of X1 given {}? X1 X4 X2 X35 X and Y are D-separated by Z (and therefore conditionally indep, given Z) iff every path from any variable in X to any variable in Y is blocked A path from variable A to variable B is blocked if it includes a node such that either 1. arrows on the path meet either head-to-tail or tail-to-tail at the node and this node is in Z 2. the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, is in Z a indep of b given c? a indep of b given f ? Markov Blanket from [Bishop, 8.2]6 What You Should Know • Bayes nets are convenient representation for encoding dependencies / conditional independence • BN = Graph plus parameters of CPD’s – Defines joint distribution over variables – Can calculate everything else from that – Though inference may be intractable • Reading conditional independence relations from the graph – Each node is cond indep of non-descendents, given only its parents – D-separation – ‘Explaining away’ See Bayes Net applet: http://www.cs.cmu.edu/~javabayes/Home/applet.html Inference in Bayes Nets • In general, intractable (NP-complete) • For certain cases, tractable – Assigning probability to fully observed set of variables – Or if just one variable unobserved – Or for singly connected graphs (ie., no undirected loops) • Belief propagation • For multiply connected graphs • Junction tree • Sometimes use Monte Carlo methods – Generate many samples according to the Bayes Net distribution, then count up the results • Variational methods for tractable approximate solutions7 Example • Bird flu and Allegies both cause Sinus problems • Sinus problems cause Headaches and runny Nose Prob. of joint assignment: easy • Suppose we are interested in joint assignment <F=f,A=a,S=s,H=h,N=n> What is P(f,a,s,h,n)? let’s use p(a,b) as shorthand for p(A=a, B=b)8 Prob. of marginals: not so easy • How do we calculate P(N=n) ? let’s use p(a,b) as shorthand for p(A=a, B=b) Generating a sample from joint distribution: easy How can we generate random samples drawn according to P(F,A,S,H,N)? let’s use p(a,b) as shorthand for p(A=a, B=b)9 Generating a sample from joint distribution: easy Note we can estimate marginals like P(N=n) by generating many samples from joint distribution, then count the fraction of samples for which N=n Similarly, for anything else we care about P(F=1|H=1, N=0) à weak but general method for estimating any probability term… let’s use p(a,b) as shorthand for p(A=a, B=b) Prob. of marginals: not so easy But sometimes the structure of the network allows us to be clever à avoid exponential work eg., chain A D B C E10 Inference in Bayes Nets • In general, intractable (NP-complete) • For certain cases, tractable – Assigning probability to fully observed set of variables – Or if just one variable unobserved – Or for singly connected graphs (ie., no undirected loops) • Variable elimination • Belief propagation • For multiply connected graphs • Junction tree • Sometimes use Monte Carlo methods – Generate many samples according to the Bayes Net distribution, then count up the results • Variational methods for tractable approximate


View Full Document

CMU CS 10601 - Notes

Documents in this Course
lecture

lecture

40 pages

Problem

Problem

12 pages

lecture

lecture

36 pages

Lecture

Lecture

31 pages

Review

Review

32 pages

Lecture

Lecture

11 pages

Lecture

Lecture

18 pages

Boosting

Boosting

21 pages

review

review

21 pages

review

review

28 pages

Lecture

Lecture

31 pages

lecture

lecture

52 pages

Review

Review

26 pages

review

review

29 pages

Lecture

Lecture

37 pages

Lecture

Lecture

35 pages

Boosting

Boosting

17 pages

Review

Review

35 pages

lecture

lecture

32 pages

Lecture

Lecture

28 pages

Lecture

Lecture

30 pages

lecture

lecture

29 pages

leecture

leecture

41 pages

lecture

lecture

34 pages

review

review

38 pages

review

review

31 pages

Lecture

Lecture

41 pages

Lecture

Lecture

15 pages

Lecture

Lecture

21 pages

Lecture

Lecture

38 pages

Notes

Notes

37 pages

lecture

lecture

29 pages

Load more
Download Notes
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Notes and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Notes 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?