DOC PREVIEW
CMU 15441 Computer Networking - 02-layering

This preview shows page 1-2-3-4 out of 12 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Page 1 15-441 Computer Networking Lecture 2 - Protocol Stacks Last Lecture: What is the Objective of Networking? • Enable communication between applications on different computers • Web (Lecture 22) • Peer to Peer (Lecture 23) • Audio/Video (Lecture 20) • Funky research stuff (Lecture 27) • Must understand application needs/demands (Lecture 3) • Traffic data rate • Traffic pattern (bursty or constant bit rate) • Traffic target (multipoint or single destination, mobile or fixed) • Delay sensitivity • Loss sensitivity 2 3 Last Lecture: Lots of Functions Needed • Link • Multiplexing • Routing • Addressing/naming (locating peers) • Reliability • Flow control • Fragmentation • Etc…. 4 Today’s Lecture • Layers and protocols • Design principles in internetworksPage 2 5 What is Layering? • Modular approach to network functionality • Example: Link hardware Host-to-host connectivity Application-to-application channels Application 6 What is Layering? Host Host Application Transport Network Link User A User B Modular approach to network functionality Peer Peer 7 Layering Characteristics • Each layer relies on services from layer below and exports services to layer above • Interface defines interaction • Hides implementation - layers can change without disturbing other layers (black box) 8 What are Protocols? • An agreement between parties on how communication should take place • Module in layered structure • Protocols define: • Interface to higher layers (API) • Interface to peer (syntax & semantics) • Actions taken on receipt of a messages • Format and order of messages • Error handling, termination, ordering of requests, etc. • Example: Buying airline ticket Friendly greeting Muttered reply Destination? Pittsburgh Thank youPage 3 9 The Internet Engineering Task Force • Standardization is key to network interoperability • The hardware/software of communicating parties are often not built by the same vendor  yet they can communicate because they use the same protocol • Internet Engineering Task Force • Based on working groups that focus on specific issues • Request for Comments • Document that provides information or defines standard • Requests feedback from the community • Can be “promoted” to standard under certain conditions • consensus in the committee • interoperating implementations • Project 1 will look at the Internet Relay Chat (IRC) RFC 10 Other Relevant Standardization Bodies • ITU-TS - Telecommunications Sector of the International Telecommunications Union. • government representatives (PTTs/State Department) • responsible for international “recommendations” • T1 - telecom committee reporting to American National Standards Institute. • T1/ANSI formulate US positions • interpret/adapt ITU standards for US use, represents US in ISO • IEEE - Institute of Electrical and Electronics Engineers. • responsible for many physical layer and datalink layer standards • ISO - International Standards Organization. • covers a broad area 11 E.g.: OSI Model: 7 Protocol Layers • Physical: how to transmit bits • Data link: how to transmit frames • Network: how to route packets • Transport: how to send packets end2end • Session: how to tie flows together • Presentation: byte ordering, security • Application: everything else • TCP/IP has been amazingly successful, and it’s not based on a rigid OSI model. The OSI model has been very successful at shaping thought 12 OSI Layers and Locations Bridge/Switch Router/Gateway Host Host Application Transport Network Data Link Presentation Session PhysicalPage 4 13 IP Layering • Relatively simple Bridge/Switch Router/Gateway Host Host Application Transport Network Link Physical 14 The Internet Protocol Suite UDP TCP Data Link Physical Applications The Hourglass Model Waist The waist facilitates interoperability FTP HTTP TFTP NV TCP UDP IP NET1 NET2 NETn … 15 Layer Encapsulation Get index.html Connection ID Source/Destination Link Address User A User B 16 Multiplexing and Demultiplexing • There may be multiple implementations of each layer. • How does the receiver know what version of a layer to use? • Each header includes a demultiplexing field that is used to identify the next layer. • Filled in by the sender • Used by the receiver • Multiplexing occurs at multiple layers. E.g., IP, TCP, … IP TCP IP TCP V/HL TOS Length ID Flags/Offset TTL Prot. H. Checksum Source IP address Destination IP address Options..Page 5 17 Protocol Demultiplexing • Multiple choices at each layer FTP HTTP TFTP NV TCP UDP IP NET1 NET2 NETn … TCP/UDP IP IPX Port Number Network Protocol Field Type Field 18 Is Layering Harmful? • Layer N may duplicate lower level functionality (e.g., error recovery) • Layers may need same info (timestamp, MTU) • Strict adherence to layering may hurt performance • Some layers are not always cleanly separated. • Inter-layer dependencies in implementations for performance reasons • Some dependencies in the standards (header checksums) • Interfaces are not really standardized. • It would be hard to mix and match layers from independent implementations, e.g., windows network apps on unix (w/out compatibility library) • Many cross-layer assumptions, e.g. buffer management 19 Today’s Lecture • Layers and protocols • Design principles in internetworks 20 Goals [Clark88] 0 Connect existing networks initially ARPANET and ARPA packet radio network 1. Survivability ensure communication service even in the presence of network and router failures 2. Support multiple types of services 3. Must accommodate a variety of networks 4. Allow distributed management 5. Allow host attachment with a low level of effort 6. Be cost effective 7. Allow resource accountabilityPage 6 21 Priorities • The effects of the order of items in that list are still felt today • E.g., resource accounting is a hard, current research topic • Let’s look at them in detail 22 Goal 0: Connecting Networks • How to internetwork various network technologies • ARPANET, X.25 networks, LANs, satellite


View Full Document

CMU 15441 Computer Networking - 02-layering

Documents in this Course
Lecture

Lecture

14 pages

Lecture

Lecture

19 pages

Lecture

Lecture

14 pages

Lecture

Lecture

78 pages

Lecture

Lecture

35 pages

Lecture

Lecture

4 pages

Lecture

Lecture

4 pages

Lecture

Lecture

29 pages

Lecture

Lecture

52 pages

Lecture

Lecture

40 pages

Lecture

Lecture

44 pages

Lecture

Lecture

41 pages

Lecture

Lecture

38 pages

Lecture

Lecture

40 pages

Lecture

Lecture

13 pages

Lecture

Lecture

47 pages

Lecture

Lecture

49 pages

Lecture

Lecture

7 pages

Lecture

Lecture

18 pages

Lecture

Lecture

15 pages

Lecture

Lecture

74 pages

Lecture

Lecture

35 pages

Lecture

Lecture

17 pages

lecture

lecture

13 pages

Lecture

Lecture

21 pages

Lecture

Lecture

14 pages

Lecture

Lecture

53 pages

Lecture

Lecture

52 pages

Lecture

Lecture

40 pages

Lecture

Lecture

11 pages

Lecture

Lecture

20 pages

Lecture

Lecture

39 pages

Lecture

Lecture

10 pages

Lecture

Lecture

40 pages

Lecture

Lecture

25 pages

lecture

lecture

11 pages

lecture

lecture

7 pages

Lecture

Lecture

10 pages

lecture

lecture

46 pages

lecture

lecture

7 pages

Lecture

Lecture

8 pages

lecture

lecture

55 pages

lecture

lecture

45 pages

lecture

lecture

47 pages

lecture

lecture

39 pages

lecture

lecture

33 pages

lecture

lecture

38 pages

lecture

lecture

9 pages

midterm

midterm

16 pages

Lecture

Lecture

39 pages

Lecture

Lecture

14 pages

Lecture

Lecture

46 pages

Lecture

Lecture

8 pages

Lecture

Lecture

40 pages

Lecture

Lecture

11 pages

Lecture

Lecture

41 pages

Lecture

Lecture

38 pages

Lecture

Lecture

9 pages

Lab

Lab

3 pages

Lecture

Lecture

53 pages

Lecture

Lecture

51 pages

Lecture

Lecture

38 pages

Lecture

Lecture

42 pages

Lecture

Lecture

49 pages

Lecture

Lecture

63 pages

Lecture

Lecture

7 pages

Lecture

Lecture

51 pages

Lecture

Lecture

35 pages

Lecture

Lecture

29 pages

Lecture

Lecture

65 pages

Lecture

Lecture

47 pages

Lecture

Lecture

41 pages

Lecture

Lecture

41 pages

Lecture

Lecture

32 pages

Lecture

Lecture

35 pages

Lecture

Lecture

15 pages

Lecture

Lecture

52 pages

Lecture

Lecture

16 pages

Lecture

Lecture

4 pages

lecture

lecture

27 pages

lecture04

lecture04

46 pages

Lecture

Lecture

46 pages

Lecture

Lecture

13 pages

lecture

lecture

41 pages

lecture

lecture

38 pages

Lecture

Lecture

40 pages

Lecture

Lecture

25 pages

Lecture

Lecture

38 pages

lecture

lecture

11 pages

Lecture

Lecture

42 pages

Lecture

Lecture

12 pages

Lecture

Lecture

36 pages

Lecture

Lecture

46 pages

Lecture

Lecture

35 pages

Lecture

Lecture

34 pages

Lecture

Lecture

9 pages

lecture

lecture

49 pages

class03

class03

39 pages

Lecture

Lecture

8 pages

Lecture 8

Lecture 8

42 pages

Lecture

Lecture

20 pages

lecture

lecture

29 pages

Lecture

Lecture

9 pages

lecture

lecture

46 pages

Lecture

Lecture

12 pages

Lecture

Lecture

24 pages

Lecture

Lecture

41 pages

Lecture

Lecture

37 pages

lecture

lecture

59 pages

Lecture

Lecture

47 pages

Lecture

Lecture

34 pages

Lecture

Lecture

38 pages

Lecture

Lecture

28 pages

Exam

Exam

17 pages

Lecture

Lecture

21 pages

Lecture

Lecture

15 pages

Lecture

Lecture

9 pages

Project

Project

20 pages

Lecture

Lecture

40 pages

L13b_Exam

L13b_Exam

17 pages

Lecture

Lecture

48 pages

Lecture

Lecture

10 pages

Lecture

Lecture

52 pages

21-p2p

21-p2p

16 pages

lecture

lecture

77 pages

Lecture

Lecture

18 pages

Lecture

Lecture

62 pages

Lecture

Lecture

25 pages

Lecture

Lecture

24 pages

Project

Project

20 pages

Lecture

Lecture

47 pages

Lecture

Lecture

38 pages

Lecture

Lecture

35 pages

Roundup

Roundup

45 pages

Lecture

Lecture

47 pages

Lecture

Lecture

39 pages

Lecture

Lecture

13 pages

Midterm

Midterm

22 pages

Project

Project

26 pages

Lecture

Lecture

11 pages

Project

Project

27 pages

Lecture

Lecture

10 pages

Lecture

Lecture

50 pages

Lab

Lab

9 pages

Lecture

Lecture

30 pages

Lecture

Lecture

6 pages

r05-ruby

r05-ruby

27 pages

Lecture

Lecture

8 pages

Lecture

Lecture

28 pages

Lecture

Lecture

30 pages

Project

Project

13 pages

Lecture

Lecture

11 pages

Lecture

Lecture

12 pages

Lecture

Lecture

48 pages

Lecture

Lecture

55 pages

Lecture

Lecture

36 pages

Lecture

Lecture

17 pages

Load more
Download 02-layering
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view 02-layering and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view 02-layering 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?