DOC PREVIEW
CU-Boulder ASEN 5022 - Beams with Uncertain Boundary Conditions

This preview shows page 1-2-20-21 out of 21 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 21 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 21 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 21 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 21 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 21 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

ASEN 5022 - Spring 2005Dynamics of Aerospace StructuresLecture 12: 24 FebruaryBeams with Uncertain Boundary ConditionsConsider a beam whose two ends are constrained by transversesprings (kw1, kw2) as well as rotational springs (kθ1, kθ2) as shownin the figure below.kw1kw2kθ1kθ2EI, m(x)xzwLBeam with unknown boundary conditionsFig. 1 Modeling of unknown boundary conditionsBefore we proceed further, it should be noted that the mathemati-cally knownboundaryconditionscanberealizedbytakingthelimitvalues of the four spring constants as follows:Simply supported : kw1= kw2→∞ and kθ1= kθ2= 0Cantilever beam x = 0:kw1= kθ1→∞ and kw2= kθ2= 0Fixed-fixed : kw1= kθ1→∞ and kw2= kθ2→∞Free-free : kw1= kθ1= 0 and kw2= kθ2= 0(1)For intermediate values of the unknown springs a convenient wayof identifying the boundary conditions is to invoke a variationalformulation. This is because the appropriate boundary conditions,both natural and essential, are determined as part of variationalprocess.Kinetic energy:T =12L0m(x)w(x, t)2tdx,w(x, t)t=∂w(x, t)∂t(2)Potential energy of the beam:Vb=12L0{ EI(x)w(x, t)2xx+ P(x)w(x, t)2x} dxw(x, t)xx=∂2w(x, t)∂x2,w(x, t)x=∂w(x, t)∂x(3)where EI(x) is the bending rigidity and P(x) is the pre-stressedaxial force.Potential energy of four unknown springs:Vs=12{ kw1w(0, t)2+ kθ1w(0, t)2x+ kw2w( L, t)2+ kθ2w( L, t)2x(4)External energy due to distributed applied force f(x, t), shear forcesQ(1,2)and moments M(1,2)applied at both ends:δW =L0f(x, t)δw(x, t) dx + Q1δw(0, t)+ M1δw(0, t)x+ Q2δw(L, t)+ M2δw(L, t)x(5)Q1= Q(0, t), Q2= Q(L, t)M1= M(0, t), M2= M(L, t)(6)Hamilton’s principlet2t1[δT − δVb− δVs+ δW ] dt = 0 (7)Kinetic energyt2t1δTdt=−L0t2t1m(x)w(x, t)ttδw(x, t) dt dx(8)Variation of the internal energy of the beam VbδVb= [EI w(x, t)xxδw(x, t)x]|L0−{[EI w(x, t)xx]xδw(x, t)}|L0+L0{ [EI w(x, t)xx]xx− [P w(x, t)x]x}δw(x, t) dx(9)Variation of the potential energy of the unknown boundary forcesand momentsδVs={kw1w(0, t)δw(0, t) + kθ1w(0, t)xδw(0, t)x+ kw2w( L, t)δw(L, t) + kθ2w( L, t)xδw(L, t)x(10)t2t1[δT − δVb− δVs+ δW ] dt = 0 (11)t2t1[δT − δVb− δVs+ δW ] dt =−t2t1{−[EI w( L, t)xx]x+ kw2w( L, t) − Q2} δw(L, t)dt+t2t1{−[EI w(0, t)xx]x− kw1w(0, t) + Q1} δw(0, t)dt−t2t1{[EI w( L, t)xx] + kθ2w( L, t)x− M2} δw(L, t)xdt+t2t1{[EI w(0, t)xx] − kθ1w(0, t)x+ M1} δw(0, t)xdt−t2t1L0{ m(x)w(x, t)tt+ [EI w(x, t)xx]xx− f (x, t) } δw(x, t) dxdt = 0(12)The governing equation of motion:m(x)w(x, t)tt+ [EI w(x, t)xx]xx− f (x, t) = 0 (13)The boundary conditions:{−[EI w( L, t)xx]x+ kw2w( L, t) − Q2} δw(L, t) = 0{−[EI w(0, t)xx]x− kw1w(0, t) + Q1} δw(0, t) = 0{[EI w( L, t)xx] + kθ2w( L, t)x− M2} δw(L, t)x= 0{[EI w(0, t)xx] − kθ1w(0, t)x+ M1} δw(0, t)x= 0(14)Free vibrations of a beamThe free vibration of beams can be modeled from (13) and (14) bysettingP = Q1= Q2= M1= M2= f (x, t) = 0 (15)so that (13) and (14) are simplified tom(x)w(x, t)tt+ [EI w(x, t)xx]xx= 0{−[EI w( L, t)xx]x+ kw2w( L, t) } δw(L, t) = 0{−[EI w(0, t)xx]x− kw1w(0, t) } δw(0, t) = 0{[EI w( L, t)xx] + kθ2w( L, t)x} δw(L, t)x= 0{[EI w(0, t)xx] − kθ1w(0, t)x} δw(0, t)x= 0(16)Free Vibration Governing Equation and Four Natural BoundaryConditions:m(x)w(x, t)tt+ [EI w(x, t)xx]xx= 0{−[EI w( L, t)xx]x+ kw2w( L, t) }=0{−[EI w(0, t)xx]x− kw1w(0, t) }=0{[EI w( L, t)xx] + kθ2w( L, t)x}=0{[EI w(0, t)xx] − kθ1w(0, t)x}=0(17)Four natural boundary conditions - cont’dw(x, t) = W(x)ejωt(18)which, when substituted into (17), yields−ω2mEIW(x) + W(x)xxxx= 0, 0 ≤ x ≤ L−W(0)xxx−kw1EIW(0) = 0w(0)xx−kθ1EIW(0)x= 0−W(L)xxx+kw2EIW(L) = 0w( L)xx+kθ2EIW(L)x= 0(19)The frequency equation of vibrations of a uniform beam can beobtained by assuming the solution in form ofW = c1sinβx + c2cosβx + c3sinhβx + c4coshβxβ4=ω2mEIWx= β(c1cosβx − c2sinβx + c3coshβx + c4sinhβx)Wxx= β2(−c1sinβx − c2cosβx + c3sinhβx + c4coshβx)Wxxx= β3(−c1cosβx + c2sinβx + c3coshβx + c4sinhβx)(20)¯β3−¯kw1−¯β3−¯kw1−¯kθ1−¯β −¯kθ1¯β−¯β3cos¯β¯β3sin¯β¯β3cosh¯β¯β3sinh¯β−¯kw2sin¯β −¯kw2cos¯β −¯kw2sinh¯β −¯kw2cosh¯β¯β sin¯β¯β cos¯β −¯β sinh¯β −¯β cosh¯β−¯kθ2cos¯β +¯kθ2sin¯β −¯kθ2cosh¯β −¯kθ2sinh¯βc1c2c3c4= 0 (21)where¯β = β L,¯kθi= kθi/(EI/L),¯kwi= kwi/(EI/L3)(22)Free-free beam (kw1= kw2= kθ1= kθ2= 0)¯β30 −¯β300 −¯β 0¯β−¯β3cos¯β¯β3sin¯β¯β3cosh¯β¯β3sinh¯β¯β sin¯β¯β cos¯β −¯β sinh¯β −¯β cosh¯βc1c2c3c4= 0⇓det10−100 −10 1−cos¯β sin¯β cosh¯β sinh¯βsin¯β cos¯β −sinh¯β −cosh¯β= 0(23)Cantilever beam (kw2= kθ2= 0, kw1→∞, kθ1→∞.)det¯β3−¯kw1−¯β3−¯kw1−¯kθ1−¯β −¯kθ1¯β−cos¯β sin¯β cosh¯β sinh¯βsin¯β cos¯β −sinh¯β −cosh¯β= 0 (24)det0 −10 −1−10 −11−cos¯β sin¯β cosh¯β sinh¯βsin¯β cos¯β −sinh¯β −cosh¯β= 0⇓(1 + cos¯β cosh¯β) = 0(25)which gives¯βk={1.875, 4.694, 7.855, ...} (26)1 2 3 4 5 6 7 8 9 10020406080100120 Fixed end rotational spring parameter for cantilever beam rotational spring, k (theta) /(EI/L) Error in fundamental frequency, percentEffect of fixed end rotational spring on fundamental frequency of a cantileverbeamSimply Supported and Fixed-Fixed Beams(w(0) = w( L) = 0 or kw1= kw2→∞)det0 −10 −1−¯kθ1−¯β −¯kθ1¯β−sin¯β −cos¯β −sinh¯β −cosh¯β¯β sin¯β¯β cos¯β −¯β sinh¯β −¯β cosh¯β−¯kθ2cos¯β +¯kθ2sin¯β −¯kθ2cosh¯β −¯kθ2sinh¯βc1c2c3c4= 0⇓¯β2sin¯β sinh¯β +¯kθ1¯β(sin¯β cosh¯β − cos¯β sinh¯β)−¯kθ2¯β cos¯β sinh¯β +¯kθ1¯kθ2(1 − cos¯β cosh¯β) =


View Full Document
Download Beams with Uncertain Boundary Conditions
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Beams with Uncertain Boundary Conditions and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Beams with Uncertain Boundary Conditions 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?