DOC PREVIEW
HARVARD MATH 19 - ps1

This preview shows page 1-2 out of 5 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Math 19. Problem Set # 1 SolutionsEx. 1, 2, 4 (a, b, c, d), 5, page 43-44October 2, 2004Ex. 1a)dydt= 5yRdyy=R5dtln y = 5t + Cy = e5t+C= C · e5tb)dydt= −3yRdyy=R(−3)dtln y = −3t + Cy = e−3t+C= C · e−3tc)dydt= 12yRdyy=R12dtln y = 12t + Cy = e12t+C= C · e12td)dydt= −1.5yRdyy=R(−1.5)dtln y = −1.5t + Cy = e−1.5t+C= C · e−1.5tWhere C is a constant.You can also just use the formula for the exponential growth equation, goingdirectly fromdpdt= ap to p(t) = p(0) · eat.Thus, you can write:1a)dydt= 5yy(t) = y(0) · e5tb)dydt= −3yy(t) = y(0) · e−3tc)dydt= 12yy(t) = y(0) · e12td)dydt= −1.5yy(t) = y(0) · e−1.5tEx. 2a)y(0) = 11a) y(t) = y(0) · e5ty(t) = e5t1b) y(t) = y(0) · e−3ty(t) = e−3t1c) y(t) = y(0) · e12ty(t) = e12t1d) y(t) = y(0) · e−1.5ty(t) = e−1.5tb)y(1) = 11a) y(t) = y(0) · e5t1 = y(0) · e5·1y(0) = e−5y(t) = e−5+5t21b) y(t) = y(0) · e−3t1 = y(0) · e−3·1y(0) = e3y(t) = e3−3t1c) y(t) = y(0) · e12t1 = y(0) · e12·1y(0) = e−12y(t) = e−12+12t1d) y(t) = y(0) · e−1.5t1 = y(0) · e−1.5·1y(0) = e1.5y(t) = e1.5−1.5tc)y(−1) = 11a) y(t) = y(0) · e5t1 = y(0) · e−5·1y(0) = e5y(t) = e5+5t1b) y(t) = y(0) · e−3t1 = y(0) · e3·1y(0) = e−3y(t) = e−3−3t1c) y(t) = y(0) · e12t1 = y(0) · e−12·1y(0) = e12y(t) = e12+12t1d) y(t) = y(0) · e−1.5t1 = y(0) · e1.5·1y(0) = e−1.5y(t) = e−1.5−1.5t3d)y(−1) = −11a) y(t) = y(0) · e5t−1 = y(0) · e−5·1y(0) = − e5y(t) = −e5+5t1b) y(t) = y(0) · e−3t−1 = y(0) · e3·1y(0) = − e−3y(t) = −e−3−3t1c) y(t) = y(0) · e12t−1 = y(0) · e−12·1y(0) = − e12y(t) = −e12+12t1d) y(t) = y(0) · e−1.5t−1 = y(0) · e1.5·1y(0) = − e−1.5y(t) = −e−1.5−1.5tEx. 4 The first order Taylor’s approximation:g(x) = f (x0) + f′(x0) · (x − x0)Since x0= 0, we have: g(x) = f (0) + f′(0) · x.a)f(x) = sin(x)g(x) = sin 0 + cos 0 · x = xb)f(x) = exg(x) = e0+ e0· x = 1 + xc)f(x) =x1+x2g(x) =01+02+1+x20−x0·2x0(1+x20)2· x = 0 +11· x = x4d)f(x) = ex· sin xg(x) = e0· sin0+(ex0· cos x0+ ex0· sin x0)· x = 0 + (e0· cos 0 + e0· sin 0)x = xEx. 5Birth rate: 4/day; kbirth= 4Death rate: 1/day; kdeath= 1dPdt= (kbirth− kdeath) · PdPdt= (4 − 1)PdPdt= 3PP (t) = P (0) · e3tWe’re given in the problem that P (0) = 1000. Therefore:P (t) = 1000 ·


View Full Document

HARVARD MATH 19 - ps1

Download ps1
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view ps1 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view ps1 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?