Unformatted text preview:

Spectrum RepresentationThe Spectrum of a Sum of SinusoidsA Notation ChangeBeat NotesBeat Note SpectrumBeat Note WaveformMultiplication of SinusoidsAmplitude ModulationPeriodic WaveformsNonperiodic SignalsFourier SeriesFourier Series: AnalysisFourier Series DerivationOrthogonality PropertySummarySpectrum of the Fourier SeriesFourier Analysis of Periodic SignalsThe Square WaveSpectrum for a Square WaveSynthesis of a Square WaveTriangle WaveTriangle Wave SpectrumSynthesis of a Triangle WaveConvergence of Fourier SeriesTime–Frequency SpectrumStepped FrequencySpectrogram AnalysisFrequency Modulation: Chirp SignalsChirped or Linearly Swept FrequencySummaryECE 2610 Signal and Systems 3–1Spectrum Representation• Extending the investigation of Chapter 2, we now considersignals/waveforms that are composed of multiple sinusoidshaving different amplitudes, frequencies, and phases(3.1)where here is real, is complex, and is the frequency in Hz• We desire a graphical representation of the parameters in(3.1) versus frequencyThe Spectrum of a Sum of Sinusoids• An alternative form of (3.1), which involves the use of theinverse Euler formula’s, is to expand each real cosine intotwo complex exponentials(3.2)xt A0Ak2fkt k+cosk 1=N+=X0ReXkej2fktk 1=N+=X0A0=XkAkejk=fkxt X0Xk2-----ej2fktXk*2------ej– 2fkt+k 1=N+=Chapter3The Spectrum of a Sum of SinusoidsECE 2610 Signals and Systems 3–2– Note that we now have each real sinusoid expressed as asum of positive and negative frequency complex sinusoidsTwo-Sided Sinusoidal Signal Spectrum: Express as in(3.2) and then the spectrum is the set of frequency/amplitudepairs(3.3)• The spectrum can be plotted as vertical lines along a fre-quency axis, with height being the magnitude of each orthe angle (phase), thus creating either a two-sided magnitudeor phase spectral plot, respectively– The text first introduces this plot as a combination of mag-nitude and phase, but later uses distinct plotsExample: Constant + Two Real Sinusoids(3.4)• We expand into complex sinusoid pairs(3.5)xt0 X0f1X12f–1X1*2  fkXk2f–kXk*2fNXN2f–NXN*2Xkxt 53 2 50 t  8+cos+= 62 300 t  2+cos+xtxt 532---ej 250t8---+32---ej– 250t8---+++= 62---ej 2300t2---+62---ej– 2300t2---+++The Spectrum of a Sum of SinusoidsECE 2610 Signals and Systems 3–3• The frequency pairs that define the two-sided line spectrumare(3.6)• We can now plot the magnitude phase spectra, in this casewith the help of a MATLAB custom functionfunction Line_Spectra(fk,Xk,mode,linetype)% Line_Spectra(fk,Xk,range,linetype)%% Plot Two-sided Line Spectra for Real Signals%----------------------------------------------------% fk = vector of real sinusoid frequencies% Xk = magnitude and phase at each positive frequency in fk% mode = 'mag' => a magnitude plot, 'phase' => a phase % plot in radians % linetype = line type per MATLAB definitions%% Mark Wickert, September 2006; modified February 2009 if nargin < 4 linetype = 'b';end my_linewidth = 2.0; switch lower(mode) % not case sensitive case {'mag','magnitude'} % two choices work k = 1; if fk(k) == 0 plot([fk(k) fk(k)],[0 abs(Xk(k))],linetype,... 'LineWidth',my_linewidth); hold on else Xk(k) = Xk(k)/2; plot([fk(k) fk(k)],[0 abs(Xk(k))],linetype,...0550 1.5ej 850– 1.5ej–  8,300 3ej 2300 3ej–  2–The Spectrum of a Sum of SinusoidsECE 2610 Signals and Systems 3–4 'LineWidth',my_linewidth); hold on plot([-fk(k) -fk(k)],[0 abs(Xk(k))],linetype,... 'LineWidth',my_linewidth); end for k=2:length(fk) if fk(k) == 0 plot([fk(k) fk(k)],[0 abs(Xk(k))],linetype,... 'LineWidth',my_linewidth); else Xk(k) = Xk(k)/2; plot([fk(k) fk(k)],[0 abs(Xk(k))],linetype,... 'LineWidth',my_linewidth); plot([-fk(k) -fk(k)],[0 abs(Xk(k))],linetype,... 'LineWidth',my_linewidth); end end grid axis([-1.2*max(fk) 1.2*max(fk) 0 1.05*max(abs(Xk))]) ylabel('Magnitude') xlabel('Frequency (Hz)') hold off case 'phase' k = 1; if fk(k) == 0 plot([fk(k) fk(k)],[0 angle(Xk(k))],linetype,... 'LineWidth',my_linewidth); hold on else plot([fk(k) fk(k)],[0 angle(Xk(k))],linetype,... 'LineWidth',my_linewidth); plot([-fk(k) -fk(k)],[0 -angle(Xk(k))],linetype,... 'LineWidth',my_linewidth); hold on end for k=2:length(fk) if fk(k) == 0 plot([fk(k) fk(k)],[0 angle(Xk(k))],linetype,... 'LineWidth',my_linewidth); elseThe Spectrum of a Sum of SinusoidsECE 2610 Signals and Systems 3–5 plot([fk(k) fk(k)],[0 angle(Xk(k))],linetype,... 'LineWidth',my_linewidth); plot([-fk(k) -fk(k)],[0 -angle(Xk(k))],... linetype,'LineWidth',my_linewidth); end end grid plot(1.2*[-max(fk) max(fk)], [0 0],'k'); axis([-1.2*max(fk) 1.2*max(fk) -1.1*max(abs(angle(Xk))) 1.1*max(abs(angle(Xk)))]) ylabel('Phase (rad)') xlabel('Frequency (Hz)') hold off otherwise error('mode must be mag or phase')end• We use the above function to plot magnitude and phase spec-tra for ; Note for the Xk’s we actually enter >> Line_Spectra([0 50 300],[5 3*exp(j*pi/8) 6*exp(j*pi/2)],'mag')>> Line_Spectra([0 50 300],[5 3*exp(j*pi/8) 6*exp(j*pi/2)],'phase')xtAkejk−300 −200 −100 0 100 200 30000.511.522.533.544.55MagnitudeFrequency (Hz)Line SpectrumMagnitude PlotX0a0=X12------a1=The Spectrum of a Sum of SinusoidsECE 2610 Signals and Systems 3–6A Notation Change• The conversion to frequency/amplitude pairs is a bit cumber-some since the factor of must be carried for all termsexcept ,


View Full Document

UCCS ECE 2610 - Spectrum Representation

Download Spectrum Representation
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Spectrum Representation and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Spectrum Representation 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?