DOC PREVIEW
Princeton COS 461 - Link‐State Routing

This preview shows page 1-2-16-17-18-33-34 out of 34 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 34 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 34 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 34 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 34 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 34 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 34 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 34 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 34 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Link‐State*Rou.ng*Reading:*Sec.ons*4.2*and*4.3.4*COS*461:*Computer*Networks*Spring*2009*(MW*1:30‐2:50*in*COS*105)*Michael*Freedman*Teaching*Assistants:*WyaN*Lloyd*and*Jeff*Terrace*hNp://www.cs.princeton.edu/courses/archive/spring09/cos461/*1!Goals*of*Today’s*Lecture*• Inside*a*router*– Control*plane:*rou.ng*protocols*– Data*plane:*packet*forwarding*• Path*selec.on*– Minimum‐hop*and*shortest‐path*rou.ng*– Dijkstra’s*algorithm*• Topology*change*– Using*beacons*to*detect*topology*changes*– Propaga.ng*topology*informa.on*• Rou.ng*protocol:*Open*Shortest*Path*First*2!What*is*Rou.ng?*• A*famous*quota.on*from*RFC*791**“A*name*indicates*what*we*seek.*An*address*indicates*where*it*is.*A*route*indicates*how*we*get*there.”*******‐‐*Jon*Postel*3!Rou.ng*vs.*Forwarding*• Rou.ng:*control*plane*– Compu.ng*paths*the*packets*will*follow*– Routers*talking*amongst*themselves*– Individual*router*crea,ng*a*forwarding*table*• Forwarding:*data*plane*– Direc.ng*a*data*packet*to*an*outgoing*link*– Individual*router*using*a*forwarding*table*4!Data*and*Control*Planes*5!Switching Fabric Processor Line card Line card Line card Line card Line card Line card data plane!control plane!Router*Physical*Layout*6!Juniper T series Cisco 12000 Switch LinecardsLine*Cards*(Interface*Cards,*Adaptors)*• Interfacing**– Physical*link*– Switching*fabric*• Packet*handling*– Packet*forwarding*– Decrement*.me‐to‐live*– Buffer*management*– Link*scheduling*– Packet*filtering*– Rate*limi.ng*– Packet*marking*– Measurement*7!to/from link to/from switch lookup Receive TransmitSwitching*Fabric*• Deliver*packet*inside*the*router*– From*incoming*interface*to*outgoing*interface*– A*small*network*in*and*of*itself*• Must*operate*ver y*quickly*– Mul.ple*packets*going*to*same*outgoing*interface*– Switch*scheduling*to*match*inputs*to*outputs*• Implementa.on*techniques*– Bus,*crossbar,*interconnec.on*network,*…*– Running*at*a*faster*speed*(e.g.,*2X)*than*links*– Dividing*variable‐length*packets*into*fixed‐size*cells*8!Packet*Switching*9!R1 Link 1 Link 2 Link 3 Link 4 Link 1, ingress Link 1, egress Link 2, ingress Link 2, egress Link 3, ingress Link 3, egress Link 4, ingress Link 4, egress Choose Egress Choose Egress Choose Egress Choose Egress “4” “4”Router*Processor*• So‐called*“Loopback”*interface*– IP*address*of*the*CPU*on*the*router*• Interface*to*network*administrators*– Command‐line*interface*for*configura.on*– Transmission*of*measurement*sta.s.cs**• Handling*of*special*data*packets*– Packets*with*IP*op.ons*enabled*– Packets*with*expired*Time‐To‐Live*field*• Control‐plane*soiware*– Implementa.on*of*the*rou.ng*protocols*– Crea.on*of*forwarding*table*for*the*line*cards*10!Where*do*Forwarding*Tables*Come*From?*• Routers*have*forwarding*tables*– Map*IP*prefix*to*outgoing*link(s)*• Entries*can*be*sta.cally*configured*– E.g.,*“map*12.34.158.0/24*to*Serial0/0.1”*• But,*this*doesn’t*adapt**– To*failures*– To*new*equipment*– To*the*need*to*balance*load*• That*is*where*rou.ng*protocols*come*in*11!Compu.ng*Paths*Between*Routers*• Routers*need*to*know*two*things*– Which*router*to*use*to*reach*a*des.na.on*prefix*– Which*outgoing*interface*to*use*to*reach*that*router*• Today’s*class:*just*how*routers*reach*each*other*– How*u*knows*how*to*forward*packets*toward*z012!12.34.158.0/24"Interface along !the path to z !u!z!Router z that can !reach destination!Compu.ng*the*Shortest*Paths*assuming*you*already*know*the*topology*13!Shortest‐Path*Rou.ng*• Path‐selec.on*model*– Des.na.on‐based*– Load‐insensi.ve*(e.g.,*sta.c*link*weights)*– Minimum*hop*count*or*sum*of*link*weights**14!3 2 2 1 1 4 1 4 5 3Shortest‐Path*Problem**• Given:*network*topology*with*link*costs*– c(x,y):*link*cost*from*node*x*to*node*y*– Infinity*if*x*and*y*are*not*direct*neighbors*• Compute:*least‐cost*paths*to*all*nodes*– From*a*given*source*u*to*all*other*nodes*– p(v):*predecessor*node*along*path*from*source*to*v*15!3 2 2 1 1 4 1 4 5 3 u!v!p(v)!Dijkstra’s*Shortest‐Path*Algorithm*• Itera.ve*algorithm*– Aier*k*itera.ons,*know*least‐cost*path*to*k*nodes*• S:*nodes*whose*least‐cost*path*defini.vely*known*– Ini.ally,*S*=*{u}*where*u*is*the*source*node*– Add*one*node*to*S*in*each*itera.on*• D(v):*current*cost*of*path*from*source*to*node*v*– Ini.ally,*D(v)*=*c(u,v)*for*all*nodes*v*adjacent*to*u*– …*and*D(v)*=*∞*for*all*other*nodes*v*– Con.nually*update*D(v)*as*shorter*paths*are*learned*16!Dijsktra’s*Algorithm*17!1 Initialization: 2 S = {u} 3 for all nodes v 4 if (v is adjacent to u) 5 D(v) = c(u,v) 6 else D(v) = ∞ 7 8 Loop 9 find w not in S with the smallest D(w) 10 add w to S 11 update D(v) for all v adjacent to w and not in S: 12 D(v) = min{D(v), D(w) + c(w,v)} 13 until all nodes in SDijkstra’s*Algorithm*Example*18!3 2 2 1 1 4 1 4 5 3 3 2 2 1 1 4 1 4 5 3 3 2 2 1 1 4 1 4 5 3 3 2 2 1 1 4 1 4 5 3Dijkstra’s*Algorithm*Example*19!3 2 2 1 1 4 1 4 5 3 3 2 2 1 1 4 1 4 5 3 3 2 2 1 1 4 1 4 5 3 3 2 2 1 1 4 1 4 5 3Shortest‐Path*Tree*• Shortest‐path*tree*from*u* • Forwarding*table*at*u*20!3 2 2 1 1 4 1 4 5 3 u!v!w!x!y!z!s!t!v (u,v) w (u,w) x (u,w) y (u,v) z (u,v) link s (u,w) t (u,w)Learning*the*Topology*by*the*routers*talk*amongst*themselves*21!Link‐State*Rou.ng*• Each*router*keeps*track*of*its*incident*links*– Whether*the*link*is*up*or*down*– The*cost*on*the*link*• Each*router*broadcasts*the*link*state*– To*give*every*router*a*complete*view*of*the*graph*• Each*router*runs*Dijkstra’s*algorithm*– To*compute*the*shortest*paths*– …*and*construct*the*forwarding*table*• Example*protocols*– Open*Shortest*Path*First*(OSPF)*– Intermediate*System*–*Intermediate*System*(IS‐IS)*22!Detec.ng*Topology*Changes*• Beaconing*– Periodic*“hello”*messages*in*both*direc.ons*– Detect*a*failure*aier*a*few*missed*“hellos”*• Performance*trade‐offs*– Detec.on*speed*– Overhead*on*link*bandwidth*and*CPU*–


View Full Document

Princeton COS 461 - Link‐State Routing

Documents in this Course
Links

Links

39 pages

Lecture

Lecture

76 pages

Switches

Switches

35 pages

Lecture

Lecture

42 pages

Links

Links

39 pages

Lecture

Lecture

34 pages

Topology

Topology

42 pages

Lecture

Lecture

42 pages

Overview

Overview

42 pages

Sockets

Sockets

45 pages

Load more
Download Link‐State Routing
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Link‐State Routing and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Link‐State Routing 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?