Unformatted text preview:

Review of Inferential Statistics January 21, 20041Political Science 552Review of Inferential StatisticsAlgebra of Summation8765432183XXXXXXXXXii+++++++=∑=223222112...NNiiXXXXX ++++=∑=NNNiiiYXYXYXYXYX ++++=∑=...3322111Sum of Square:Sum of Product:Summation-Continued()()( )( )( )()()∑∑∑===+=+++++++++=+++++++++=++++++++=++++++++=+NiiNiiNNNNNNNNNiiiYXYYYYXXXXYYYYXXXXYXYXYXYXYXYXYXYXYX113213213213213322113322111..................Sum of Sum:Review of Inferential Statistics January 21, 20042Summation-Continued II()∑∑===++++=++++=NiiNNNiiXkXXXXkkXkXkXkXkX13213211......()()∑∑∑∑∑∑∑∑========++=++=++=+NiiNiiiNiiNiiNiiiNiiNiiiiiNiiiYYXXYYXXYYXXYX121121211212212222Sum of Constant times Variable:Sum of Squared Sum:Summation-Continued III()∑∑=−==+++≠++++++++++=++++=NiiNNNNNNNiiXXXXXXXXXXXXXXXXXXXXXX12222211321312122221232121...2..22...22......rcrcjriijXXXXXXX +++++++=∑∑==.....22121211111Square of Sum:Double summation:Binomial Distribution()()()sNssNssNsNsNsp−−−−=−=ππππ1!!!1)(Review of Inferential Statistics January 21, 20043Notation Probability)()(ssYYPYf ==Joint ProbabilityConditional ProbabilityStatistical Independence),(21YYf);(21YYf)()(),(2121YfYfYYf ×=Expected Values{}∑==XssXfXXEµ)({} ( )∫+∞∞−= dXXXfXEFunctions and Variance)( XgY =()2)( kXXgY −=={} {}(){}22XEXEX −=σVARIANCE OPERATOR:{}X2σReview of Inferential Statistics January 21, 20044Algebra of Expectation}{}{ YEkYkE +=+}{}{ YEkYkE ×=× }{}{}{ YEXEYXE ×=×Sum of constant and random variable:Product of constant and random variableProduct of two independent random variables:kkE =}{ConstantExpectation-continued{}∑∑===kiikiiYEYE11Sum of two or more random variables:{}∑∑===kiiikiiiYEaYaE11Linear combination of two or more random variablesExpectation: Variances{}∑∑===kiiikiiiYaYa12212σσVariance of linear combination of two or more independent random variables:Covariance defined:{} {}(){}(){}YEYXEXEYX −−=,σCovariance of two linear combinations of the same set of independent random variables:{}{}∑∑∑=iiiiiiiYcaYcYa2,σσReview of Inferential Statistics January 21, 20045Alternative Linear Estimators of the Mean321332123211414141ˆ412141ˆ313131ˆXXXXXXXXX++=++=++=µµµExpected Values of Estimators{}{}{}++=++=++=321332123211414141ˆ412141ˆ313131ˆXXXEEXXXEEXXXEEµµµ{}{}{}++=++=++=321332123211414141ˆ412141ˆ313131ˆXEXEXEEXEXEXEEXEXEXEEµµµExpected Values-continued{} {} {} {}{}{} {} {}{}{} {} {}321332123211414141ˆ412141ˆ313131ˆXEXEXEEXEXEXEEXEXEXEE++=++=++=µµµ{}{}{}µµµµµµµµµµµµµµµ43414141ˆ412141ˆ313131ˆ321=++==++==++=EEEReview of Inferential Statistics January 21, 20046Variances of Estimators{} {} {} {}{}{} {} {}{}{} {} {}322212321232322212321222322212321212161161161414141ˆ16141161412141ˆ919191313131ˆXXXXXXXXXXXXXXXXXXσσσσµσσσσσµσσσσσµσ++=++=++=++=++=++={} {} {} {} {}{}{} {} {} {}{}{} {} {} {}XXXXXXXXXXXX222232222222222212163161161161ˆ8316141161ˆ31919191ˆσσσσµσσσσσµσσσσσµσ=++==++==++=Mean Square Error{} ( ){}2ˆˆθθθ−= EMSE{}{}{}θθσθˆˆˆ22BiasMSE +=10=µ{}102=Xσ{}333.301031ˆ1=+=µMSE{}75.301083ˆ2=+=µMSE{}125.8250.6875.110431010163ˆ23=+=−+=µMSEInterval Estimation{} {}()95.96.196.1 =+<<− XXXPσµσµ()95.=≤≤highlowCCPθ{} {}()95.96.196.1 =−>>+ XXXXPσµσPivot method:For the mean:{})1,0(~ norXXσµ−Review of Inferential Statistics January 21, 20047Interval Estimate for Variance{}()1ˆ22−−=∑nXXXσ{}( ){}2)1(22~1ˆ−−×nXnXχσσ{}( ){}95.1ˆ2975),.1(222025),.1(=≥−×≥−− nnXnXPχσσχ{}( ) {}( )95.1ˆ1ˆ2025),.1(222975),.1(2=−×≥≥−×−− nXnnXnXPχσσχσExample of Interval for Variance36.392412141.12241212×>>×FTσn = 25s{FT} = 11s2{FT} = 121df = 2439.36224,.025=χ12.41224,.975=χ{}( ) {}( )95.1ˆ1ˆ2025),.1(222975),.1(2=−×≥≥−×−− nXnnXnXPχσσχσ59.830.15or78.7304.2342>>>>FTFTσσMaximum Likelihood Estimation);(θYf()∏==niinYfYYYf121;),...,,(θ()∏==niisYfYf1;);(θθReview of Inferential Statistics January 21, 20048ML-continued I()()()∏∏====niiniisfYfYfYf11,;);(θθθθ()()()θθθ;,ssYffYf ×=or()()()sssYfYfYf ;,θθ×=ML-continued II()()()sssYfYfYfθθ,; =()() ( )()sssYfYffYfθθθ;;×=()()()()θθθ;;sssYfYffYf ×=ML-continued III()()θθ;~;ssYfYf()() ()∏===niisYfLYf1;;θθθ()[]()[]∑==niiYfL1;loglogθθReview of Inferential Statistics January 21, 20049ML for binomial() ( ) ( )snssnssnL−−−−=πππππ1~1()[] [] [ ] []ππππ−−−+= 1log]1logloglog snLLog-Likelihood:Stata Program to Estimate Binomial Likelihoodversion 8.2************************************************************* Do file to estimate a maximum likeihood for a binomial * Programmed by Bert Kritzer, January 8, 2004************************************************************drop _all* Generate values for piset obs 39egen pi=fill(0.025[.025].975)* compute likelihood for each value of pi (N=20, s=12)* note that binomial coefficient (20!)/(12! x 8!) is constant, * and can be omittedgen LikeLi=(pi^12)*((1-pi)^8)* plot the resulting likelihoodtwoway (connected LikeLi pi, msymbol(none)), ytitle(Likelihood) title(Estimating a Binomial Maximum Likelihood)0 5.00 e-07 1.00 e-06 1.50 e-06Likelihood0 .2 .4 .6 .8 1piEstimating a Binomial Maximum


View Full Document

UW-Madison POLISCI 552 - Algebra of Summation

Download Algebra of Summation
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Algebra of Summation and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Algebra of Summation 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?