New version page

UK EE 468G - Unit Vectors, Vectors, Vector operations Vectors in three coordinate systems

Upgrade to remove ads

This preview shows page 1-2-3-4 out of 11 pages.

Save
View Full Document
Premium Document
Do you want full access? Go Premium and unlock all 11 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 11 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 11 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 11 pages.
Access to all documents
Download any document
Ad free experience

Upgrade to remove ads
Unformatted text preview:

EE468G NOTES (1) Reading assignment: Vectors Contents: Unit Vectors, Vectors, Vector operations Vectors in three coordinate systems Vector: A quantity that has magnitude and direction Examples: Force, velocity, field intensity Notation and writting: or A or AA Unit vector: a vector whose magnitude is 1. Examples: ˆ ˆxax is a unit vector pointing in x-direction, ˆyis a unit vector pointing in y-direction. Vector representation in rectangular coordinate system: component format ˆ5Ax ˆ ˆ37B x y ˆ ˆˆ22C x y z   x y x y x y z 2 2 1 -7 3 5 In general, a vector has three components xA, yA, zA: ˆ ˆˆx y zA A x A y A z  , Component xA is the projection of vector A on x-axis.Calculation of magnitude: 222x y zA A A A  . Examples: Direction of a vector: The direction of a vector can be described by three angles that the vector made with the x-axis, y-axis, and z-axis, respectively. In the above examples,  222ˆ ˆ3 7 , 3 7 0 58B x y B       It makes an angle of  1cos 3 58 66.8o with x-axis, It makes an angle of  1cos 7 58 156.8o with y-axis, It makes an angle of  1cos 0 58 90o with z-axis. In general, if ˆ ˆˆx y zA A x A y A z  , the angles it makes with x-, y-, and z-components are: z, , and xy  , where      1 1 1cos , cos , cosx x y y z zA A A A A A       Example: Let ˆ ˆˆ6 2.5 0.8A x y z  , calculate A, z, , and xy  . Solution:     2221116 2.5 0.8 42.89 6.55cos 6 6.55 23.65cos 2.5 6.55 67.56cos 0.8 6.55 97.02oxoyozA         2222 2 2ˆ ˆ3 7 , 3 7 0 58ˆ ˆˆ2 2 , 2 2 1 9 3B x y BC x y z C             Vector operations: Addition and subtraction ˆ ˆˆx y zA A x A y A z  , ˆ ˆˆx y zB B x B y B z   Addition of A and B:    ˆ ˆˆx x y y z zA B A B x A B y A B z       Subtraction of A and B:    ˆ ˆˆx x y y z zA B A B x A B y A B z       The results of addition and subtraction are vectors. The addition and subtraction operation satisfy the commutative law and distributive law. Graphical representation of ABand AB A B A+B B A B A-B Example: Let ˆ ˆˆ6 2.5 0.8A x y z  , ˆ ˆˆ3 2 6B x y z   calculate AB, and AB Solution:      ˆ ˆ ˆ ˆˆ ˆ6 3 2.5 2 6 0.8 3 4.5 5.2A B x y z x y z               ˆ ˆ ˆ ˆˆ ˆ6 3 2.5 2 6 0.8 9 0.5 6.8A B x y z x y z         Vector operation: Scalar product (dot product): ˆ ˆˆx y zA A x A y A z  , ˆ ˆˆx y zB B x B y B z   Scalar product: x x y y z zA B A B A B A B     The result of the dot product of two vectors is a scalar.  The addition and subtraction operation satisfy the commutative law: A B B A   and distributive law:  A B C A B A C       If the two vectors A and B make an angle of AB, then  cosABA B A B Example: Let ˆ ˆˆ6 2.5 0.8A x y z  , ˆ ˆˆ3 2 6B x y z   , ˆ ˆˆ3 10C x y z  , Calculate , , and A B B C A C   Solution:    6 3 2.5 2 0.8 6 17.8AB              3 1 2 3 6 10 51BC             6 1 2.5 3 0.8 10 9.5AC           Two vectors, A and B, are said to be perpendicular to each other if and only if 0AB. B AB AA is perpendicular to B can also be written as: AB. Example: Let ˆ ˆˆ6 1.5A x y a z  , ˆ ˆˆ3 2 6B x y z   , show that when 15/6a , we have AB. Proof: AB requires 0AB Consider  6 3 1.5 2 6 15 6A B a a           Let 0AB, then: 15/6a . In Cartesian coordinate system, ˆ ˆ ˆ ˆ ˆ ˆ,,x y y z z xa a a a a a  Cross product: ˆ ˆˆx y zA A x A y A z  , ˆ ˆˆx y zB B x B y B z   Cross product is defined as:    ˆ ˆˆy z z y z x x z x y y xA B A B A B x A B A B y A B A B z       ->The result of the cross product of two vectors is a vector ->which is perpendicular to both A and B (RH-RULE). ->Cross product satisfies distributive law:  A B C A B A C      ->Cross product does not satisfy commutative law: A B B A   But: (A B B A   ) In Cartesian coordinate system: ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,,x y z y z x z x ya a a a a a a a a      Hence the unit vectors satisfy the right-hand rule: ˆ ˆ ˆx y za a a ˆza ˆza ˆxa ˆyaCalculation of cross product using determinants: ˆ ˆˆˆ ˆˆy z x yxzx y zy z x yxzx y zx y zA A A AAAA B A A A x y zB B B BBBB B B     Example: Let ˆ ˆˆ6 2.5 0.8A x y z  , ˆ ˆˆ3 2 6B x y z   , ˆ ˆˆ3 10C x y z  , Calculate , A B B C. Solution: ˆ ˆˆ2.5 0.8 6 0.8 6 2.5ˆ ˆˆ6 2.5 0.82 6 3 6 3 23 2 6ˆ ˆˆ16.6 33.6 19.5x y zA B x y zx y z        ˆ ˆˆ2 6 …


View Full Document
Download Unit Vectors, Vectors, Vector operations Vectors in three coordinate systems
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Unit Vectors, Vectors, Vector operations Vectors in three coordinate systems and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Unit Vectors, Vectors, Vector operations Vectors in three coordinate systems 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?