UMD ECON 300 - Extreme Values of Multivariate Functions

Unformatted text preview:

Extreme Values of Multivariate Functions Professor Peter Cramton Economics 300Extreme values of multivariate functions • In economics many problems reflect a need to choose among multiple alternatives – Consumers decide on consumption bundles – Producers choose a set of inputs – Policy-makers may choose several instruments to motivate behavior • We now generalize the univariate techniquesStationary points and tangent planes of bivariate functions 221 1 2 26 16 4g x x x x   221 2 1 2 1 24 2 16h x x x x x x    Slices of a bivariate function 221 1 2 26 16 4g x x x x   116 2 0gx  2216 8 0gx  Multivariate first-order condition • If is differentiable with respect to each of its arguments and reaches a maximum or a minimum at the stationary point, then each of the partial derivatives evaluated at that point equals zero, i.e. 12( , ,..., )nf x x x**1( ,..., )nxx**11**1( ,..., ) 0.........( ,..., ) 0nnnf x xf x xSecond-order condition in the bivariate case First total differential 121 1 2 1 2 1 2 21 1 2 2( , )( , ) ( , )i.e.y f x xdy f x x dx f x x dxdy f dx f dx12( , )f x xSecond-order condition in the bivariate case Second total differential 212121 1 2 2 1 1 2 212122211 1 12 1 2 22 2[ ] [ ][ ] [ ]( ) 2 ( ) ( )dy dyd y dx dxxxf dx f dx f dx f dxdx dxxxf dx f dx dx f dx         12( , )f x xExtreme values and multivariate functions Sufficient condition for a local maximum (minimum) • If the second total derivative evaluated at a stationary point of a function f(x1,x2) is negative (positive) for any dx1 and dx2, then that stationary point represents a local maximum (minimum) of the functionExtreme values and multivariate functions Sufficient Condition for a Local Minimum: Sufficient Condition for a Local Minimum: 221211 2211()0 if 0 and 0fd y f ff   2211 11 22 120 if 0 and d y f f f f  Extreme values and multivariate functions Sufficient Condition for a Local Maximum: Sufficient Condition for a Local Maximum: 221211 2211()0 if 0 and 0fd y f ff   2211 11 22 120 if 0 and d y f f f f  Extreme values of multivariate functions – bivariate case • Choose (x1,x2) to maximize (or to minimize) f(x1,x2)First Order Conditions: f1 (x1,x2)=0 and f2 (x1,x2)=0 stationary points **12( , )xxSecond Order Conditions Local Minimum if ___________________ Local Maximum if  **11 1 22* * * * * *11 1 2 22 1 2 12 1 2( , ) 0( , ) ( , ) ( , )f x xandf x x f x x f x x **11 1 22* * * * * *11 1 2 22 1 2 12 1 2( , ) 0( , ) ( , ) ( , )f x xandf x x f x x f x xExercises • Choose (x1,x2) to minimize 221 2 1 2 1 2( , ) 4 2f x x x x x x   221 2 1 2 1 2*1 1 1*2 2 2( , ) 4 2:4 2 0 214 1 04f x x x x x xFOCf x xf x x            112211 12 22211 11 22 124241: We need to find , ,If 0 and . ( ) , then local minfxfxSOC f f ff f f f112211122211211 22 124241: 204Observe that 2 0 and . 2(4) 8 0 ( )1Hence, ( 2, ) is local minimum. 4fxfxSOCfffff f f   Exercise 2 • Find the local max and local min of 221 2 1 2 1 2( , ) 8 7 14f x x x x x x   221 2 1 2 1 2*1 1 1*2 2 2( , ) 8 7 14:8 2 0 414 14 0 1f x x x x x xFOCf x xf x x            112211122211211 22 128214 14: 2014Observe that 2 0 and . ( 2)( 14) 28 0 ( )Hence, (4,1) is local max. fxfxSOCfffff f f         Exercise 3 • Find the local max and local min of 221 2 1 2 1 2 1 2( , ) 2 4 16f x x x x x x x x     221 2 1 2 1 2 1 21 1 22 2 1( , ) 2 4 16:2 2 08 16 0f x x x x x x x xFOCf x xf x x            1 1 22 2 11 2 2 1*1 1 1*22 2 08 16 02 2 0 2 28(2 2 ) 16 0 02f x xf x xx x x xx x xx                  1 1 22 2 111122211211 22 12228 16: 218Observe that 2 0 and . (2)(8) 16 1 ( )Hence, (0,2) is local min. f x xf x xSOCfffff f f        Exercise 4 • Find the local max and local min of 221 2 1 2 1 2 1 211( , )82f x x x x x x x x     221 2 1 2 1 2 1 21 1 22 2 111( , )82:101104f x x x x x x x xFOCf x xf x x             1 1 22 2 11 2 2 11 1 1 1*1*21011041 0 11(1 ) 1 0 1 4 4 0410f x xf x xx x x xx x x xxx                       1 1 22 2 111122211211 22 121114: 1114Observe that 1 0 and 11. ( 1)( ) 1 ( )44Hence, no concl.f x xf x xSOCfffff f f             Exercise 6 • Find the local max and local min of 231 2 2 1 211( , )23f x x x x x   231 2 2 1 22*1 1 1*2 2 211( , )23:0 0 1 0 1f x x x x xFOCf x xf x x            2112211 112221: 201fxfxSOCfxff  11 1122211211 22 12At (0,1): 2001Observe that 0 and . (0)( 1) 0 0 ( )Hence, no conl.SOCfxffff f f      Exercise 7 • Find the local max and local min of 231 2 1 2 1 211( , )23f x x x x x x   231 2 1 2 1 22 * *1 1 1 1*2 2 …


View Full Document

UMD ECON 300 - Extreme Values of Multivariate Functions

Download Extreme Values of Multivariate Functions
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Extreme Values of Multivariate Functions and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Extreme Values of Multivariate Functions 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?