Unformatted text preview:

Extreme Values of Multivariate Functions Professor Peter Cramton Economics 300 Extreme values of multivariate functions In economics many problems reflect a need to choose among multiple alternatives Consumers decide on consumption bundles Producers choose a set of inputs Policy makers may choose several instruments to motivate behavior We now generalize the univariate techniques Stationary points and tangent planes of bivariate functions g 6 x1 x12 16 x2 4 x22 h x12 4 x22 2 x1 16 x2 x1 x2 Slices of a bivariate function g 6 x1 x 16 x2 4 x 2 1 g1 6 2 x1 0 2 2 g 2 16 8 x2 0 Multivariate first order condition If f x1 x2 xn is differentiable with respect to each of its arguments and reaches a maximum or a minimum at the stationary point x1 xn then each of the partial derivatives evaluated at that point equals zero i e f1 x x 0 f n x1 xn 0 1 n Second order condition in the bivariate case f x1 x2 First total differential y f x1 x2 dy f1 x1 x2 dx1 f 2 x1 x2 dx2 i e dy f1dx1 f 2 dx2 Second order condition in the bivariate case f x1 x2 Second total differential dy dy d y dx1 dx2 x1 x2 2 f1dx1 f 2 dx2 f1dx1 f 2 dx2 dx1 dx2 x1 x2 f11 dx1 2 2 f12 dx1 dx2 f 22 dx2 2 Extreme values and multivariate functions Sufficient condition for a local maximum minimum If the second total derivative evaluated at a stationary point of a function f x1 x2 is negative positive for any dx1 and dx2 then that stationary point represents a local maximum minimum of the function Extreme values and multivariate functions Sufficient Condition for a Local Minimum 2 f12 d y 0 if f11 0 and f 22 0 f11 2 Sufficient Condition for a Local Minimum d y 0 if f11 0 and f11 f 22 f 2 2 12 Extreme values and multivariate functions Sufficient Condition for a Local Maximum 2 f12 d y 0 if f11 0 and f 22 0 f11 2 Sufficient Condition for a Local Maximum d y 0 if f11 0 and f11 f 22 f 2 2 12 Extreme values of multivariate functions bivariate case Choose x1 x2 to maximize or to minimize f x1 x2 First Order Conditions f1 x1 x2 0 and f2 x1 x2 0 stationary points 1 2 x x Second Order Conditions Local Minimum if f11 x1 x2 0 and f11 x x f 22 x x f12 x x 1 2 1 2 1 2 Local Maximum if f11 x1 x2 0 and f11 x x f 22 x x f12 x x 1 2 1 2 1 2 2 2 Exercises Choose x1 x2 to minimize f x1 x2 4 x1 2 x x x2 2 2 2 1 f x1 x2 4 x1 2 x22 x12 x2 FOC f1 4 2 x1 0 x1 2 1 f 2 4 x2 1 0 x 4 2 f1 4 2 x1 f 2 4 x2 1 SOC We need to find f11 f12 f 22 If f11 0 and f11 f 22 f12 then local min 2 f1 4 2 x1 f 2 4 x2 1 SOC f11 2 f12 0 f 22 4 Observe that f11 2 0 and f11 f 22 2 4 8 0 f12 2 1 Hence 2 is local minimum 4 Exercise 2 Find the local max and local min of f x1 x2 8x1 7 x x 14 x2 2 2 2 1 f x1 x2 8 x1 7 x x 14 x2 2 2 2 1 FOC f1 8 2 x1 0 x 4 1 f 2 14 x2 14 0 x 1 2 f1 8 2 x1 f 2 14 x2 14 SOC f11 2 f12 0 f 22 14 Observe that f11 2 0 and f11 f 22 2 14 28 0 f12 2 Hence 4 1 is local max Exercise 3 Find the local max and local min of f x1 x2 2 x1 4 x x 16 x2 x1 x2 2 2 2 1 f x1 x2 2 x1 4 x x 16 x2 x1 x2 2 2 FOC f1 2 2 x1 x2 0 f 2 8 x2 16 x1 0 2 1 f1 2 2 x1 x2 0 f 2 8 x2 16 x1 0 2 2 x1 x2 0 x2 2 2 x1 8 2 2 x1 16 x1 0 x 0 1 x 2 2 f1 2 2 x1 x2 f 2 8 x2 16 x1 SOC f11 2 f12 1 f 22 8 Observe that f11 2 0 and f11 f 22 2 8 16 1 f12 2 Hence 0 2 is local min Exercise 4 Find the local max and local min of 1 2 1 2 f x1 x2 x1 x2 x1 x2 x1 x2 8 2 1 2 1 2 f x1 x2 x1 x2 x1 x2 x1 x2 8 2 FOC f1 1 x1 x2 0 1 f 2 x2 1 x1 0 4 f1 1 x1 x2 0 1 f 2 x2 1 x1 0 4 1 x1 x2 0 x2 1 x1 1 1 x1 1 x1 0 1 x1 4 4 x1 0 4 x1 1 x2 0 f1 1 x1 x2 1 f 2 x2 1 x1 4 SOC f11 1 f12 1 1 f 22 4 Observe that f11 1 0 and 1 1 f11 f 22 1 1 f12 2 4 4 Hence no concl Exercise 6 Find the local max and local min of 1 2 1 3 f x1 x2 x2 x1 x2 2 3 1 2 1 3 f x1 x2 x2 x1 x2 2 3 FOC f1 x 0 x 0 2 1 1 f 2 x2 1 0 x 1 2 f1 x 2 1 f 2 x2 1 SOC f11 2 x1 f12 0 f 22 1 At 0 1 SOC f11 2 x1 0 f12 0 f 22 1 Observe that f11 0 and f11 f 22 0 1 0 0 f12 2 Hence no conl Exercise 7 Find the local max and local min of 1 2 1 3 f x1 x2 x1 x2 x1 x2 2 3 1 2 1 3 f x1 x2 x1 x2 x1 x2 2 3 FOC f1 1 x 0 x 1 or x 1 2 1 1 1 f 2 x2 1 0 x 1 2 Two stationary points 1 1 and 1 1 f1 1 x 2 1 f 2 x2 1 SOC f11 2 x1 f12 0 f 22 1 At 1 1 SOC f11 2 x1 2 f12 0 f 22 1 Observe that f11 2 0 and f11 f 22 2 1 2 0 f12 2 Hence 1 1 is local max At 1 1 SOC f11 2 x1 2 1 2 f12 0 f 22 1 Observe that f11 2 0 and f11 f 22 2 1 2 0 f12 2 Hence at 1 1 no concl


View Full Document

UMD ECON 300 - Extreme Values of Multivariate Functions

Download Extreme Values of Multivariate Functions
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Extreme Values of Multivariate Functions and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Extreme Values of Multivariate Functions and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?