GT AE 6450 - Electrostatic Propulsion Ion Engines

Unformatted text preview:

1AE6450 Rocket PropulsionElectric Propulsion-1Copyright © 2003-2006 by Jerry M. Seitzman. All rights reserved.Electrostatic PropulsionIon EnginesAE6450 Rocket PropulsionElectric Propulsion-2Copyright © 2003-2006 by Jerry M. Seitzman. All rights reserved.Electrostatic Thrusters• Ion engine example• Near vacuum required• Ion source–usually electronbombardmentplasma–also ion contact: propellant flowingthrough hot poroustungsten – field emission: chargedspray droplets/particles• Electrons added toneutralize exhaust– thermionic emittersSpace Propulsion Analysis and Design, Humble, Henry and Larson, 1995LAAccelerator2AE6450 Rocket PropulsionElectric Propulsion-3Copyright © 2003-2006 by Jerry M. Seitzman. All rights reserved.Electrostatics - Definitions• V – potential or voltage(sometimes φ) (Volts)• E – electric field (V/m, N/Coulomb)• q – charge (C) (qe-=1.602×10-19C)•Force• Potential Energy• J – current (A, Coulomb/s)• j – charge current density(A/m2, Coulomb/m2s )• n – charge density (C/m3)−=−∇=dxdVVErxVErnquj=qEFrr=VqqEdxFdx ∆==∫∫∆VAE6450 Rocket PropulsionElectric Propulsion-4Copyright © 2003-2006 by Jerry M. Seitzman. All rights reserved.Electrostatic Thruster Performance - ue• Specific impulse• Find exhaust velocity fromenergy balance• So maximum specific impulse limited by voltage difference across accelerator()inletexiteVVmqu −= 2smMWV )volts(800,13∆=for singlyionizedVqmue∆=221ueoespguI =3AE6450 Rocket PropulsionElectric Propulsion-5Copyright © 2003-2006 by Jerry M. Seitzman. All rights reserved.Electrostatic Thruster Performance - ττττ•Thrust• Mass flow rate related to current• Maximum thrust limited by achievable current density• For ion engine, ion current limitedby space-charge– field from denseions creates “shield”from applied E field223max294LVmqjo∆=εmeterFarado1210854.8−×=εpermittivityof free spaceChild-LangmuirLawaccelerator electrode spacing()22238maxm)volts(1044.5mAmpsLMWVj∆×=−for singly ionizedeum&=τmnρ=qmjAm =⇒&enquj =+++++++++++++++++AE6450 Rocket PropulsionElectric Propulsion-6Copyright © 2003-2006 by Jerry M. Seitzman. All rights reserved.Electrostatic Thruster Thrust - ττττ• Maximum thrust• High τ requires high ∆V and aspect ratio– space charge⇒D/L ~1– use many small ion beams toget more thrust()eeuqmjAum ==&τeuqmAjmaxmax=τVmqqmALVmqo∆∆=2294223ε()22max98 LVAo∆=ετA=cross-sectional area flowfor circular cross-sectionof diameter, D()()22max92 VLDo∆=επτ()NewtonsVLD in1018.62212∆×=−DL≠≠≠≠f(q/m)4AE6450 Rocket PropulsionElectric Propulsion-7Copyright © 2003-2006 by Jerry M. Seitzman. All rights reserved.Electrostatic Thruster Thrust - Propellant• For fixed specific impulse – best propellant for high thrust• heavy molecules (particles)• xenon (Xe) good choice (MW=131.3)• also macro particles possible (colloidal thrusters)qmA∝maxτ∆====spacceloospospeIqmLVmqgIqmjAgIqmjuqmjA223maxmax294εττCs,Hg: but storage issuesAE6450 Rocket PropulsionElectric Propulsion-8Copyright © 2003-2006 by Jerry M. Seitzman. All rights reserved.Electrostatic Thruster Power• Jet power• at maximum current• Accelerator electrical power• Power supplied to thrusterspoejIgumPτ21212==&thjthPPη=225294accelacceloLVmqA∆=εVjAVJPaccelelec∆=∆=5AE6450 Rocket PropulsionElectric Propulsion-9Copyright © 2003-2006 by Jerry M. Seitzman. All rights reserved.Electrostatic Thruster Power - Losses• Ionization losses– must account for energy used to create ions (e.g., Xe→Xe+)– minimum loss given by ionization potential (εI) for atom times current (units of electron volts, eV)• Beam divergence, multiple ionization, sputtering/heating (ion impacts on grid)• Propellant utilization efficiency • Neutralization losses()qmmJPionionlossion&εε==γupropellantbeammmη=&&IεneutV∆AE6450 Rocket PropulsionElectric Propulsion-10Copyright © 2003-2006 by Jerry M. Seitzman. All rights reserved.Nonideal Performance and Typical Values• Nonideal performance equations• Typical values–εionεIup to 100-300 eV/ion–γ0.8-0.95–ηu0.8-0.95–∆Vneut10-20VidealspuspII,γη=()neutaccelionththVVVJVJP ∆+∆+∆=∆=uospebgImumητ&&==()accelneutionuththbthjthVVVVJqmJVJmPP∆∆+∆+=∆=∆==122222γηττη&∆Vaccel, Ispηth∆Vbeamdominateslow Isp ion engines are inefficient6AE6450 Rocket PropulsionElectric Propulsion-11Copyright © 2003-2006 by Jerry M. Seitzman. All rights reserved.Ionization Chambers• Electron bombardment– most common– 1) thermionic production of seed e-, 2) accel. e-(static field), 3) bombard neutral gas molec. and ionize them• hollow cathode or separate thermionic source • mag. field to gyrate e-for increased collisions with neutrals • RF discharges• For liquid metals (e.g. Cs), can flow over another metal (e.g., Tu) to ionizeAE6450 Rocket PropulsionElectric Propulsion-12Copyright © 2003-2006 by Jerry M. Seitzman. All rights reserved.Ionization Chamber (1)• Hollow cathode7AE6450 Rocket PropulsionElectric Propulsion-13Copyright © 2003-2006 by Jerry M. Seitzman. All rights reserved.• Thermionic e-emission from filament• Magnetic field induced e-gryrationIonization Chamber (2)AE6450 Rocket PropulsionElectric Propulsion-14Copyright © 2003-2006 by Jerry M. Seitzman. All rights reserved.Electron Bombardment Xe+Engine Example• Operating conditions– ∆Vaccel=700 V, L=2.5 mm, 2200 holes (grids) each with D=2.0 mm– MW(Xe)=131.3, εI(Xe)=12.08 eV• Determine– τ, –ue, Isp– m– power required including only minimum needed for ionization and neutralization (10 V).8AE6450 Rocket PropulsionElectric Propulsion-15Copyright © 2003-2006 by Jerry M. Seitzman. All rights reserved.Solution()2212max1018.6 VLD ∆×=−τ()gridN /1094.17005.2/21018.662212−−×=×=()mNgridNgridstotal3.4/1094.122006,max=×=−τsmsmMWVue3.131700800,13800,13 =∆=smue860,31=sIsp3248=⇒sgume41034.1−×==τ&()mmqVumPPPPneutIeneutionjet&&∆++=++=ε22kgkgMWm25271019.21067.1−−×=×=Cq1910602.1−×=for singly ionized molec.WW 16.29.67 +=WP 1.70=maximum effic. =67.9/70.1= 97%AE6450 Rocket PropulsionElectric Propulsion-16Copyright © 2003-2006 by Jerry M. Seitzman. All rights reserved.Child-Langmuir Law Derivation• Poisson’s Eqn.–1-doiioqqnVεερ−=−=∇2ooiiujqndxVdεε−=−=22()xVVqmjoo−−=12ε+


View Full Document

GT AE 6450 - Electrostatic Propulsion Ion Engines

Download Electrostatic Propulsion Ion Engines
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Electrostatic Propulsion Ion Engines and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Electrostatic Propulsion Ion Engines 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?