ELMHURST CHM 103 - Week 11 DNA
School name Elmhurst College
Course Chm 103-
Pages 8

Unformatted text preview:

Week # 11 - DNA-RNALectures - 29, and 30http://www.elmhurst.edu/~chm/vchembook/580DNA.htmlConcepts:Parts lists for DNA and RNA - sugars, phosphate, basesStructure of DNA and RNA - hydrogen bonding - base pairingDNA replication and transcripition to RNATypes of RNA - mRNA, tRNA, rRNAGenetic Code and use in protein synthesisRecombinant DNA, PCR, DNA FingerprintingQues. 1. List by name the heterocyclic amines in DNA and RNA.Ques. 2. What are the three major chemical compounds in a DNA nucleotide? Ques. 3. a. List and explain the major primary structural features in an DNA polynucleotide. What are the "backbone" and the "side chains"?b. What are the differences in a similar description for RNA?Ques. 4: Use the above structures to answer the questions below:a. Which structure is a phosphate?b. Which structure is a pentose sugar or ribose?c. Which structure is a heterocyclic amine or a base?d. Which structure is a nucleotide?e. Which structure is a phosphate ester bond?Ques. 5: Use the structures above to answer the following questions:a. In base pairing if the name is given for cytosine, then the other base with letter A must be _______?b. In base pairing if the name is given for adenine, then the other base with letter B in RNA must be ___________?c. The dotted green balls represent what kind of bond? ___________Ques. 6: a. The structure represented by A is _________? By B is ________?b. The structure represented by C is __________? c. The backbone of alternating structures of A and B is held together by what kind of bond _______?d. The heterocyclic amine "side chains" structures represented by C are held together by what kind of bond__________?Ques. 7. Describe all types of bonding in a double helix DNA. Include the "backbone" as well as the "interchain interactions".Ques. 8. Using the short segment of DNA below, replicate the DNA in preparation for all division. Clearly label the "original" and "new" DNA strands. original DNA #1 A T A G C T A T A T C G A T DNA #2 Ques. 9. Using the DNA strand above, describe fully the DNA replication process. Include template, hydrogen bonding, base pairing, complementary strand.Ques. 10. Starting with the given strand of DNA #1, make a replication of the strand into another strand of DNA # 2. DNA #1 C T T G G G T C C G C A G T T DNA # 2Ques. 11. Make a transcription of the second strand of DNA #2 (made in QUES. 10) to messenger RNA.DNA #2 mRNARead and translate the codons on m-RNA into the appropriate amino acids. Ques. 12. Make a transcription of the strand of DNA #1 to messenger RNA.DNA # 1 A G A T G AmRNARead and translate the codons on m-RNA into the appropriate amino acids.Ques. 13. Read and translate the codons on m-RNA into the appropriate amino acids. m-RNA = C A G A A U G U C U G G Write out the complete structure of the protein to be made.Ques. 14. List, contrast, and explain the function of the three types of RNA molecules.Describe r-RNA =m-RNA =Describe t-RNA =Ques 15. What is the anticodon? What is the difference between an anticodon and a codon?Ques. 16. Explain the complete process for protein synthesis as exemplified in the above questions starting with DNA and finishing with making of the protein.Use all of the types of DNA and RNA and the processes involved.http://www.elmhurst.edu/~chm/vchembook/584proteinsyn.htmlSee graphic on next page.Ques. 17. Make a transcription of the strand of DNA #1 to messenger RNA.DNA # 1 A G A T G A G T Ga. mRNAb. Read and translate the codons on m-RNA into the appropriate amino acids.c. If a mutation of the first G-guanine is mutated into C-cytosine, how does this change the amino acid sequence? Be specific by redoing the problem with this one mutation.d. In a frame shift mutation, one base is either added or deleted. If a C-cytosine is added after the first A, how does this mutation change the sequence of amino acids produced? e. Explain how this frame shift mutation is probably responsible for many of the enzyme genetic defect diseases?Ques. 18. In Hb-S, the abnormal hemoglobin found in individuals with sickle cell anemia, glutamic acid at position #6 in the beta chain is replaced by valine.a. List the two codons for glu and the four codons for val that might be read fromthe mRNA.b. Show how a single change in the codon of one base (heterocyclic amine) on the mRNA results in val substitution for glu.c. Continue going backwards, what base is the mutation on the DNA that would give a wrong base on mRNA and hence give the wrong code for glu instead of val in the hemoglobin.d. Explain why the change of one amino acid - the substitution of valine in place of the correct glutamic acid cause such a drastic change in properties.Ques. 19: Explain how recombinant DNA is able to cause E. coli bacteria to make human insulin.Ques. 20: Explain the basic principle of DNA finger printing for identification or for genetic screening.Ques. 21: Explain the basic principles of PCR or gene cloning. What is the purpose? And how can it be combined with DNA fingerprinting.Ques. 22: Explain the basic principles of how a virus works and how a vaccine can prevent a viral infection.Ques. 23: What are the principles involved with various treatments to control HIVand AIDS?Anticancer Drug Actions:http://www.elmhurst.edu/~chm/vchembook/655cancer2.htmlCatagories of Chemotherapy Drugs:In general, chemotherapy agents can be divided into three main categories based on their mechanism of action.Stop the synthesis of pre DNA molecule building blocks:These agents work in a number of different ways. DNA building blocks are folic acid, heterocyclic bases, and nucleotides, which are made naturally within cells. All of these agents work to block some step in the formation of nucleotides or deoxyribonucleotides necessary for making DNA). When these steps are blocked, the nucleotides, which are the building blocks of DNA and RNA, can not be synthesized. Thus the cells can not replicate because they cannot make DNA without the nucleotides. Examples of drugs in this class include (1) methotrexate (Abitrexate®), (2) fluorouracil (Adrucil®), (3) hydroxyurea (Hydrea®), and (4) mercaptopurine (Purinethol®).Directly damage the DNA in the nucleus of the cell: Agents chemically damage DNA and RNA. They disrupt replication of the DNA and either totally halt replication or


View Full Document

ELMHURST CHM 103 - Week 11 DNA

Course: Chm 103-
Pages: 8
Download Week 11 DNA
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Week 11 DNA and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Week 11 DNA 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?