DOC PREVIEW
MIT 18 01 - Exam 4 Review

This preview shows page 1-2 out of 7 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 7 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 7 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 7 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

MIT OpenCourseWare http://ocw.mit.edu 18.01 Single Variable Calculus Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.�Exam 4 Review 18.01 Fall 2006 Exam 4 Review 1. Trig substitution and trig integrals. 2. Partial fractions. 3. Integration by parts. 4. Arc length and surface area of revolution 5. Polar coordinates 6. Area in polar coordinates. Questions from the Students • Q: What do we need to know about parametric equations? • A: Just keep this formula in mind: � �2 � �2dx dyds = + dt dt Example: You’re given x(t) = t4 and y(t) = 1 + t Find s (length). � ds = (4t3)2 + (1)2dt Then, integrate with respect to t. • Q: Can you quickly review how to do partial fractions? • A: When finding partial fractions, first check whether the degree of the numerator is greater than or equal to the degree of the denominator. If so, you first need to do algebraic long-division. If not, then you can split into partial fractions. Example. x2 + x + 1 (x − 1)2(x + 2) We already know the form of the solution: x2 + x + 1 A B C = + +(x − 1)2(x + 2) x − 1 (x − 1)2 x + 2 There are two coefficients that are easy to find: B and C. We can find these by the cover-up method. 12 + 1 + 1 3 B = = (x 1)1 + 2 3 → 1Exam 4 Review 18.01 Fall 2006 To find C, (−2)2 − 2 + 1 1 C = = (−2 − 1)2 3(x → −2) To find A, one method is to plug in the easiest value of x other than the ones we already used (x = 1, −2). Usually, we use x = 0. 1 A 1 1/3 = + +(−1)2(2) −1 (−1)2 2 and then solve to find A. The Review Sheet handed out during lecture follows on the next page. 2����� � � � � � � � Exam 4 Review 18.01 Fall 2006 Exam 4 Review Handout 1. Integrate by trigonometric substitution; evaluate the trigonometric integral and work backwards to the original variable by evaluating trig(trig−1) using a right triangle: a) a2 − x2 use x = a sin u, dx = a cos u du. b) a2 + x2 use x = a tan u, dx = a sec2 u du c) x2 − a2 use x = a sec u, dx = a sec u tan u du 2. Integrate rational functions P/Q (ratio of polynomials) by the method of partial fractions: If the degree of P is less than the degree of Q, then factor Q completely into linear and quadratic factors, and write P/Q as a sum of simpler terms. For example, 3x2 + 1 A B1 B2 Cx + D = + + +(x − 1)(x + 2)2(x2 + 9) x − 1 (x + 2) (x + 2)2 x2 + 9 Terms such as D/(x2 + 9) can be integrated using the trigonometric substitution x = 3 tan u. This method can be used to evaluate the integral of any rational function. In practice, the hard part turns out to be factoring the denominator! In recitation you encountered two other steps required to cover every case systematically, namely, completing the square1 and long division.2 3. Integration by parts: � b uv�dx = uv b � b a − u�vdx a a This is used when u�v is simpler than uv�. (This is often the case if u� is simpler than u.) 4. Arclength: ds = dx2 + dy2. Depending on whether you want to integrate with respect to x, t or y this is written ds = 1 + (dy/dx)2 dx; ds = (dx/dt)2 + (dy/dt)2 dt; ds = (dx/dy)2 + 1 dy 5. Surface area for a surface of revolution: a) around the x-axis: 2πyds = 2πy 1 + (dy/dx)2 dx (requires a formula for y = y(x)) b) around the y-axis: 2πxds = 2πx (dx/dy)2 + 1 dy (requires a formula for x = x(y)) 6. Polar coordinates: x = r cos θ, y = r sin θ (or, more rarely, r = x2 + y2, θ = tan−1(y/x)) a) Find the polar equation for a curve from its equation in (x, y) variables by substitution. b) Sketch curves given in polar coordinates and understand the range of the variable θ (often in preparation for integration). 7. Area in polar coordinates: � θ2 1 r 2dθ2θ1 (Pay attention to the range of θ to be sure that you are not double-counting regions or missing them.) 1For example, we rewrite the denominator x2 + 4x + 13 = (x + 2)2 + 9 = u2 + a2 with u = x + 2 and a = 3. 2Long division is used when the degree of P is greater than or equal to the degree of Q. It expresses P (x)/Q(x) = P1(x) + R(x)/Q(x) with P1 a quotient polynomial (easy to integrate) and R a remainder. The key point is that the remainder R has degree less than Q, so R/Q can be split into partial fractions. 3� � Exam 4 Review 18.01 Fall 2006 The following formulas will be printed with Exam 4 sin2 x + cos2 x = 1; sec2 x = tan2 x + 1 sin2 x = 12 − 12 cos 2x; cos2 x = 12 + 12 cos 2x cos 2x = cos2 x − sin2 x; sin 2x = 2 sin x cos x d 2 d d 1 d 1 dx tan x = sec x; dx sec x = sec x tan x; dx tan−1 x = 1 + x2 ; dx sin−1 x = √1 − x2 tan x dx = − ln(cos x) + c; sec x dx = ln(sec x + tan x) + c See the next page for a review on integration of rational functions. 4� | | � � � � � � Exam 4 Review 18.01 Fall 2006 Postscript: Systematic integration of rational functions For a general rational function P/Q, the first step is to express P/Q as the sum of a polynomial and a ratio in which the numerator has smaller degree than the denominator. For example, x3 = x + 2 + 3x − 2 x2 − 2x + 1 x2 − 2x + 1 (To carry out this long division, do not factor the denominator Q(x) = x2 − 2x + 1, just leave it alone.) The quotient x + 2 is a polynomial and is easy to integrate. The remainder term 3x − 2 (x − 1)2 has a numerator 3x − 2 of degree 1 which is less than the degree 2 of the denominator (x − 1)2 . Therefore there is a partial fraction decomposition. In fact, 3x − 2 =(3x − 3) + 1 =3+ 1 (x − 1)2 (x − 1)2 x − 1 (x − 1)2 In general, if P has degree n and Q has degree m, then long division gives P (x) R(x)= P1(x) + Q(x) Q(x) in which P1, the quotient in …


View Full Document

MIT 18 01 - Exam 4 Review

Documents in this Course
Graphing

Graphing

46 pages

Exam 2

Exam 2

3 pages

Load more
Download Exam 4 Review
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Exam 4 Review and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Exam 4 Review 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?