Berkeley ELENG 240A - Lecture 6 Noise Analysis Techniques

Unformatted text preview:

EECS240 – Spring 2009Lecture 6: Noise Analysis TechniquesElad AlonDept. of EECSEECS240 Lecture 6 2Noise Variance in a Real Circuit:Sample and Hold• Noise on the capacitor:• So effective bandwidth is:()()22220141on BBoT onvf kTRsRCkTvvfdfC∞=+→= =∫4142BBokTkTR fCffRCπ∆=→∆ = =EECS240 Lecture 6 3SPICE VerificationEECS240 Lecture 6 4Energy-Based AnalysisEECS240 Lecture 6 5Useful Integrals2222021141oozzoosQdfssQωωωωωω∞+⎛⎞=+⎜⎟⎝⎠++∫20114oosdfωω∞=+∫222200221411oooo oosQdf dfss ssQQωωωω ωω∞∞==++ ++∫∫EECS240 Lecture 6 6CS Amplifier()FLBvoLBLmLBLLLmLBLLLmLBoTLLLmLBonnCTkACTkRgCTkCRRgRTkdfCsRRgRTkvCsRRgRTkfv=⎟⎠⎞⎜⎝⎛+=⎟⎠⎞⎜⎝⎛+=⎟⎟⎠⎞⎜⎜⎝⎛+=+⎟⎟⎠⎞⎜⎜⎝⎛+=+⎟⎟⎠⎞⎜⎜⎝⎛+=∫∞321321413214113214132142022222EECS240 Lecture 6 7Signal-To-Noise Ratio• SNR:• Signal Power (sinusoidal source):• Noise Power (assuming thermal noise dominates):• So:noisesigPPSNR =221peakzerosigVP−=fBnoisenCTkP =212zero peakfBCVSNRnkT−=4 ×↑CdBSNR 6 +↑EECS240 Lecture 6 8dB versus Bits• Quantization “noise”• Quantizer step size:• Box-car pdf variance:• SNR of N-Bit sinusoidal signal• Signal power• SNR• 6.02 dB per Bit122∆=QS∆22221⎟⎠⎞⎜⎝⎛∆=NsigP[]dB 02.676.125.12NSPSNRNQsig+=×==146249816508dBNEECS240 Lecture 6 9SNR versus Power• 1 Bit Æ 6dB Æ 4x SNR• 4x SNR Æ 4x C• Circuit bandwidth ~gm/C Æ 4x gm• Keeping V* constant Æ 4x ID, 4x W• Thermal noise limited circuit:• Each bit QUADRUPLES power!• Overdesign is expensive• Better do the analysis right!EECS240 Lecture 6 10Analog Circuit Dynamic Range• Biggest signal set by VDD. So, for (single-ended) sinusoid:• The noise is• So the dynamic range in dB is:221)(maxDDVrmsV =CTknrmsVBfn=)([pF] in C with[dB] 7520log[V/V] 8)()(10max+⎟⎟⎠⎞⎜⎜⎝⎛===fDDBfDDnnCVTknCVrmsVrmsVDREECS240 Lecture 6 11Analog Circuit Dynamic Range• Biggest swing set by supply voltage VDD• Modern ICs: VDD = ~1V, C < ~1nF (nf= 1)• DR < 100dB (~16 Bits)• PCB circuits with 30V and discrete C of ~100nF:• DR < 140dB (23 Bits)• A 40dB (~7 Bit) advantage!• Note: can break this barrier with oversampling 212DDfBCVSNRnkT=EECS240 Lecture 6 12Sampled Noise SpectrumSy(f)CRsw4kBTRswfs()CTkdffSfTCRTafTeefCTkfSrBysswaasrBysf∫====−+−=−−2022)(1 and T 2cos1112)(τπ0 0.1 0.2 0.3 0.4 0.5-4-3-2-101234Normalize d Fr equ ency f/ fsNormalized Noise Density S(f)/(2kT/C)T/τ = 1T/τ = 3• What if RC doesn’t completely settle every cycle?• Noise between samples correlated Æ spectrum not white• If T/τ > 3, correlation small• Sampled spectrum white• In practice usually the caseEECS240 Lecture 6 13Periodic Noise AnalysisPSS pss period=100n maxacfreq=1.5G errpreset=conservativePNOISE ( Vrc_hold 0 ) pnoise start=0 stop=20M lin=500 maxsideband=10ZOH1T = 100nsZOH1T = 100nsS1R100kOhmR100kOhmC1pFC1pFPNOISE Analysissweep from 0 to 20.01M (1037 steps)PNOISE1Netlistahdl_include "zoh.def"ahdl_include "zoh.def"Vclk100nsVrc Vrc_holdSampling Noise from SC S/HC11pFC11pFC11pFC11pFR1100kOhmR1100kOhmR1100kOhmR1100kOhmVoltage NOISEVNOISE1NetlistsimOptions options reltol=10u vabstol=1n iabstol=1psimOptions options reltol=10u vabstol=1n iabstol=1psimOptions options reltol=10u vabstol=1n iabstol=1psimOptions options reltol=10u vabstol=1n iabstol=1pSpectreRF PNOISE: checknoisetype=timedomainnoisetimepoints=[…]as alternative to ZOH.noiseskipcount=largemight speed up things in this case.EECS240 Lecture 6 14Two-Stage AmplifierEECS240 Lecture 6 15Input Equivalent NoiseEECS240 Lecture 6 16Equivalent Noise Generators• Model for noisy two-port:• Noiseless two-port • Plus equivalent input noise sources• In general, vnand inare correlated. • Ignore that for nowEECS240 Lecture 6 17Finding the Equivalent Generators• Find vnand inby opening and shorting the input• Shorted input: • Output noise due only to vn• Open input:• Output noise due only to inEECS240 Lecture 6 18Role of Source Resistance• If Rsis large:• Design amplifier with low in(MOS)• If Rsis low:• Design amplifier with low vn(BJT)• For a given Rs, there is an optimal vn/inratio• Alternatively, for a given amp, there is an optimal RsEECS240 Lecture 6 19Total Output NoiseEECS240 Lecture 6 20New Equivalent Generator• With known Rs, total noise can be lumped into one veqEECS240 Lecture 6 21Optimum Source Impedance• Can use this to optimize source impedance for minimum added noise from two-port (noise figure):24nnvRkT f≡∆24nniGkT f≡∆EECS240 Lecture 6 22Correlated Noise Sources• Partition ininto two components:• Correlated (“parallel”) to vn• Uncorrelated (“perpendicular”) to vnvniniciuEECS240 Lecture 6 23Correlated Noise Sources (cont.)Finding Yc:()()222222222222222221uscsnuscsnucsnnsneqiZYZviZiZviiZviZvv++=++=++=+={{22222222211 222222222 3 3222222222 2211 22ccnunniYviccnvviiiviYviviααβββαα==+=+==+EECS240 Lecture 6 24Equivalent Noise Voltage (cor)• Since the above expression is the sum of two uncorrelated noise voltages, we have• Now we can continue as before to


View Full Document

Berkeley ELENG 240A - Lecture 6 Noise Analysis Techniques

Download Lecture 6 Noise Analysis Techniques
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture 6 Noise Analysis Techniques and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture 6 Noise Analysis Techniques 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?