DOC PREVIEW
MIT 5 62 - LECTURE NOTES

This preview shows page 1-2 out of 7 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 7 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 7 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 7 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

MIT OpenCourseWare http://ocw.mit.edu 5.62 Physical Chemistry II Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.  2 5.62 Lecture #17: Chemical Equilibrium. II. Examples Readings: Hill, pp. 182-187Maczek, pp. 83-92Metiu, pp. 191-196 Dissociation of a Diatomic Molecule AB →← A + B p°)(pB p°)Kp = (q*A / N)(q*B / N) e+ΔD00RT [unitless] =(pA (q*AB / N) (pAB p°) Kp =(qtrans,B N)(qtrans,A N) g0,Bg0,A qrot,Bqrot,A q*vib,B q*vib,A e+ΔD00RT (qtrans,AB N) g0,AB qrot,AB q*vib,AB Kp = (2πmB)3/2 (kT)5/2 (2πmA)3/2 (kT)5/2 h3ph3p h3p (2πmAB )3/2 (kT)5/2 g0,Bg0,A ⋅1⋅1⋅σθrot,AB(g0,AB T ⋅1⋅1 1− e−θvib,AB T )e+ΔD00 RT × p is in units of bar because the standard state p° = 1 bar = 105 pascal. But all terms in statistical mechanical expression for Kp are evaluated in S. I. units. Be careful! (2πµ)3/2 (kT)5/2 g0,Bg0,A σθrot (1− e−θvib T )e+ΔD00 RT Kp = h3p g0,AB T where µ= mAmB = mAmB reduced mass mA + mB mAB kg/molecule for SI 2 I2 ← 2I Kp =→ pI [p’s in bar]pI2 mI = 0.1269 kg mol–1 µ I2 = 0.06345 kg mol−1 g0, I = 4 g0, I2 = 1 σI2 = 2 ωe = 214.5 cm–1 θvib = 308.6K Be = 0.03737 cm–1 θrot = 0.05377K5.62 Spring 2008 Lecture #17, Page 2 D00, I2 = 12440cm–1 = 17889K (determined by laser spectroscopy!) [Be careful about units here!] ΔD00 = ∑ p(D00 ) −∑ r (D00 )= 0 − (17889K) = −17889K p r σ θrot Kp =(2π0.0634 6 ·1023 )3/ 2 (kT)5 / 2 4·4 2·0.0537 (1− e−308.6 T )e−17889 T h3·105 1 T 1 bar = 105 pascal. 1 pascal = 1N/m2. 1N = 1kg m s–2 )(16) 0.1074 (1− e−308.6/T ) e−17889/T Kp =(13.115 T5/2 T Kp = 22.537 T3/2 (1 − e−308.6/T ) e−17889/T T[K] Kp(calc) Kp(expt) % error 1274 0.1761 0.170±0.001 3% 1173 4.9999⋅10–2 (4.68±0.03) ⋅10–2 2.6% 1073 1.14⋅10–2 1.10⋅10–2 3% 973 1.93⋅10–3 1.82⋅10–3 5.4% 872 2.13⋅10–4 (1.84±0.17) ⋅10–4 –14% probably more accurateM. J. Perlman and G. K. than expt because Kp is Rollefson, J. Chem. so small at low T, thatPhys. 9, 362 (1941)partial pressue ofdissociated I atoms is too small to measure accurately revised 1/10/08 12:55 PM5.62 Spring 2008 Lecture #17, Page 3 3 Isotope Exchange Reaction →H2 + D2 ← 2HD Kp = qHD * N( )2 qH2 * N( ) qD2 * N( ) ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ e+ΔD00 RT Kp = qtrans,HD / N ( )2 qtrans,H2 N( ) qtrans,D2( N) g0,HD 2 g0,H2 g0,D2 qvib,HD *2 qvib,H2 * qvib,D2 * qrot,HD 2 qrot,H2 qrot,D2 e+ΔD00 RT Kp = 2πmHD ( )3 (kT)5 h6 p2 h3p 2πmH2( )3 /2 (kT)5/2 h3p 2πmD2( )3 /2 (kT)5/2 g0,HD 2 g0,H2 g0,D2 D2 σD2(1− e −θvib,H2 T )(1− e−θvib,D2 T ) ⎛ kT ⎞ 2 ⎛ hcBeH2 σH2 ⎞ ⎛ hcBe (1− e−θvib,HD T )2 ⎝⎜ hcBeHDσHD ⎠⎟ ⎜⎝kT ⎠⎟ ⎝⎜⎜ kT mH2 = 2 amu σH2 = 2 g0(H2) = 1 D00(H2) = 36,100 cm–1 mHD = 3 amu σHD = 1 g0(HD) = 1 D00(HD) = 36,394 cm–1 mD2 = 4 amu σD2 = 2 g0(D2) = 1 D00(D2) = 36,742 cm–1 H2ωe(H2) = 4401 cm–1 θvib = 6337 K Be(H2) = 60.8 cm–1 ωe(HD) = 3813 cm–1 HD = 5419 K Be(HD) = 45.7 cm–1θvib (D2) = 3116 cm–1 D2Be(D2) = 30.4 cm–1ωeθvib = 4487 K ΔD00 = ∑ ( −∑r D0 )p D0 ) ( p r 0 ([ ] = −54 cm−1 = −78K ΔD0 = 2 36, 394) − 36,100 + 36, 742 ⎞ ⎟ e+ΔD00 RT ⎟⎠ revised 1/10/08 12:55 PM5.62 Spring 2008 Lecture #17, Page 4 What is Kp at T = 298K? mHDg0,HD2 H2 T D2 T3 (1 − e−θvib )(1 − e−θvib ) BHe 2 BeD2 σH2 σD2 e+ΔD00RT HD T )2 2HD Kp = mH3 22mD3 2 2 g0,H2g0,D2 (1 − e−θvib(Be )σHD Kp = 0.003 / 6 ⋅1023( )3 0.002 6.1023( )3/2 0.004 6.1023( )3/2 12 (1 − e−4487/298 ) 1⋅1 (1 − e−5419/298 )2 × (1 − e−6337/298 )(60.8)(30.4) 2 ⋅ 2e−78/298 (45.7)21 = 3.27 T[K] Kp[CALC] Kp[EXP] 298 3.27 3.28 383 3.47 3.50 741 3.82 3.75 DEPENDENCE OF Kp ON T Kp Kp I2→←2I H2 + D2→←2HD Qualitative difference in behaviors: →→Ι2 ← 2ΙΗ2 + D2 ← 2HD 0Kp ≈ q2trans−Ie+ΔD0RT q2trans,HD qrot, HD 2 qvib,HD 2 e+ΔD 00 /RT qtrans−I2qrotqvib Kp ≈ qtrans,H2qtrans,D2qrot, H2qvib,H2qrot, D2qvib,D2 revised 1/10/08 12:55 PM5.62 Spring 2008 Lecture #17, Page 5 qtrans I ≈ qtransI2(ignore factor of 2 in mass) qtrans,HD  qtrans,H2  qtrans,D2 32 3/2 ⎤ ⎥⎦≈ 1⎡ ⎢⎣ ⎧ ⎪⎪ ⎪ ⎪⎪⎨ignoring mass 2·4 qrot,H2  qrot,D2  qrot,HD ⎡⎢⎢⎣ ⎪ ⎪ ⎪ ⎪⎪⎩functions )2µHD 2 µH2 µD2 ⎤(2 / 3(1 / 2) 1( ) ≈ 1⎥⎥⎦ = qvib,H2  qvib,D2  qvib,HD Kp ∝ qtrans e+∆ D00 RT Kp ∝ σ2e+ ∆ D00RT qrot qvib qtrans  1030, qrot  103, qvib  1,"∆ D00  −18, 000K ∆ D00  −78K Kp ∝ 1027e−18,000 /T Kp ∝ 4e−78/T * large T dependence and large Kp “Small” values of Kp: because of 1027 factor — gain in translational entropy due to* no gain in entropy except for change in number of moles symmetry # (factor of 4) * results in shift of equilibrium* Kp → 4 at modest T because of small toward separated atoms at high T difference in zero point energy. * actually qtrans ∝ T5/2 , 1 1∝ T, the qrot pre-exponential factor is T- dependent * as T increases, both pre- exponential and exponential factors increase and shift equilibrium toward dissociation. Recall from 5.60: ∆ G°(T) = ∆ H°(T) − T∆ S°(T) = −RTln K(T) K(T) = e∆ S°( T)/R  e− ∆ H°(T)/RT  pre-exponentialfactor This gives us an intuitive understanding of the T-dependence of equilibrium constants.Mostly, ∆S°(T) is determined by change in number of moles (strong T-dependence),secondarily in changes in floppiness (approximately T-independent). Mostly ∆H°(T) isdetermined by bond energies (or differences in dissociation energies), but if you want tocompute K(T) from microscopic quantities, use K(T) = e− ∆ G° RT and use statistical mechanics to calculate ∆G°(T) directly, not both ∆H°(T) and ∆S°(T) separately. revised 1/10/08 12:55 PM5.62 Spring 2008 Lecture #17, Page 6 In using statistical mechanics to compute equilibrium constants, it iscomputationally most compact and intuitively most instructive to assemble the relevantfactors in qC * N( )c qD * N( )d qA * N( )a qB * N( )b by assembling all of the relevant information factored according to degee of freedom (translation)(electronic)(vibration)(rotation) Translation Key factors are * does the number of moles change* the only species-specific quantity is mass Electronic Key factor is degeneracy of ground state For CO X1∑+  C(3P) + O(3P) g: 1 3 × 3 3 × 3 The electronic factor is usually


View Full Document

MIT 5 62 - LECTURE NOTES

Download LECTURE NOTES
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view LECTURE NOTES and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view LECTURE NOTES 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?