DOC PREVIEW
MIT 6 041 - Probability Density Functions

This preview shows page 1-2 out of 6 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 6 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 6 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 6 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

6.041/6.431 Probabilistic SystemsAnalysisQuiz II ReviewFall 201011 Probability Density Functions (PDF)For a continuous RV X with PDF fX(x),P (a ≤ X ≤ b)=bafX(x)dxP (X ∈ A)=AfX(x)dxProperties:• Nonnegativity:fX(x) ≥ 0 ∀x• Normalization:∞−∞fX(x)dx =122 PDF InterpretationCaution: fX(x) = P (X = x)• if X is continuous, P (X = x)=0 ∀x!!• fX(x)canbe≥ 1Interpretation: “probability per unit length” for “small” lengthsaround xP (x ≤ X ≤ x + δ) ≈ fX(x)δ33 Mean and variance of a continuous RVE[X]=∞−∞xfX(x)dxVar(X)=E (X −E[X])2=∞−∞(x − E[X])2fX(x)dx= E[X2] − (E[X])2(≥ 0)E[g(X)] =∞−∞g(x)fX(x)dxE[aX + b]=aE[X]+bVar(aX + b)=a2Var(X)44 Cumulative Distribution FunctionsDefinition:FX(x)=P (X ≤ x)monotonically increasing from 0 (at −∞)to1(at+∞).• Continuous RV (CDF is continuous in x):FX(x)=P (X ≤ x)=x−∞fX(t)dtfX(x)=dFXdx(x)• Discrete RV (CDF is piecewise constant):FX(x)=P (X ≤ x)=k≤xpX(k)pX(k)=FX(k) − FX(k − 1)55 Uniform Random VariableIf X is a uniform random variable over the interval [a,b]:fX(x)=⎧⎨⎩1b−aif a ≤ x ≤ b0 otherwiseFX(x)=⎧⎪⎪⎨⎪⎪⎩0ifx ≤ ax−ab−aif a ≤ x ≤ b1 otherwise (x>b)E[X]=b − a2var(X)=(b − a)21266 Exponential Random VariableX is an exponential random variable with parameter λ:fX(x)=⎧⎨⎩λe−λxif x ≥ 00 otherwiseFX(x)=⎧⎨⎩1 − e−λxif x ≥ 00 otherwiseE[X]=1λvar(X)=1λ2Memoryless Property: Given that X>t, X − t is anexponential RV with parameter λ77 Normal/Gaussian Random VariablesGeneral normal RV: N(μ, σ2):fX(x)=1σ√2πe−(x−μ)2/2σ2E[X]=μ, Var(X)=σ2Property: If X ∼ N (μ, σ2)andY = aX + bthen Y ∼ N(aμ + b, a2σ2)88NormalCDFStandard Normal RV: N(0, 1)CDF of standard normal RV Y at y: Φ(y)- given in tables for y ≥ 0-fory<0, use the result: Φ(y)=1− Φ(−y)To evaluate CDF of a general standard normal, express it as afunction of a standard normal:X ∼ N (μ, σ2) ⇔X −μσ∼ N(0, 1)P (X ≤ x)=PX − μσ≤x − μσ=Φx − μσ99JointPDFJoint PDF of two continuous RV X and Y : fX,Y(x, y)P (A)=AfX,Y(x, y)dxdyMarginal pdf: fX(x)=∞−∞fX,Y(x, y)dyE[g(X, Y )] =∞−∞∞−∞g(x, y)fX,Y(x, y)dxdyJoint CDF: FX,Y(x, y)=P (X ≤ x, Y ≤ y)1010 IndependenceBy definition,X, Y independent ⇔ fX,Y(x, y)=fX(x)fY(y) ∀(x, y)If X and Y are independent:• E[XY ]=E[X]E[Y ]• g(X)andh(Y ) are independent• E[g(X)h(Y )] = E[g(X)]E[h(Y )]1111 Conditioning on an eventLet X be a continuous RV and A be an event with P (A) > 0,fX|A(x)=⎧⎨⎩fX(x)P (X∈A)if x ∈ A0 otherwiseP (X ∈ B|X ∈ A)=BfX|A(x)dxE[X|A]=∞−∞xfX|A(x)dxE[g(X)|A]=∞−∞g(x)fX|A(x)dx12If A1,...,Anare disjoint events that form a partition of the samplespace,fX(x)=ni=1P (Ai)fX|Ai(x)(≈ total probability theorem)E[X]=ni=1P (Ai)E[X|Ai] (total expectation theorem)E[g(X)] =ni=1P (Ai)E[g(X)|Ai]1312 Conditioning on a RVX, Y continuous RVfX|Y(x|y)=fX,Y(x, y)fY(y)fX(x)=∞−∞fY(y)fX|Y(x|y)dy (≈ totalprobthm)Conditional Expectation:E[X|Y = y]=∞−∞xfX|Y(x|y)dxE[g(X)|Y = y]=∞−∞g(X)fX|Y(x|y)dxE[g(X, Y )|Y = y]=∞−∞g(x, y)fX|Y(x|y)dx14Total Expectation Theorem:E[X]=∞−∞E[X|Y = y]fY(y)dyE[g(X)] =∞−∞E[g(X)|Y = y]fY(y)dyE[g(X, Y )] =∞−∞E[g(X, Y )|Y = y]fY(y)dy1513 Continuous Bayes’ RuleX, Y continuous RV, N discrete RV, A an event.fX|Y(x|y)=fY |X(y|x)fX(x)fY(y)=fY |X(y|x)fX(x)∞−∞fY |X(y|t)fX(t)dtP (A|Y = y)=P (A)fY |A(y)fY(y)=P (A)fY |A(y)fY |A(y)P (A)+fY |Ac(y)P (Ac)P (N = n|Y = y)=pN(n)fY |N(y|n)fY(y)=pN(n)fY |N(y|n)ipN(i)fY |N(y|i)1614 Derived distributionsDef: PDF of a function of a RV X with known PDF: Y = g(X).Method:• Get the CDF:FY(y)=P (Y ≤ y)=P (g(X) ≤ y)=x|g(x)≤yfX(x)dx• Differentiate: fY(y)=dFYdy(y)Special case:ifY = g(X)=aX + b, fY(y)=1|a|fX(x−ba)1715 ConvolutionW = X + Y ,withX, Y independent.• Discrete case:pW(w)=xpX(x)pY(w − x)• Continuous case:fW(w)=∞−∞fX(x)fY(w − x) dx18Graphical Method:• put the PMFs (or PDFs) on top of each other• flip the PMF (or PDF) of Y• shift the flipped PMF (or PDF) of Y by w• cross-multiply and add (or evaluate the integral)In particular, if X, Y are independent and normal, thenW = X + Y is normal.1916 Law of iterated expectationsE[X|Y = y]=f(y)isanumber.E[X|Y ]=f (Y ) is a random variable(the expectation is taken with respect to X).To compute E[X|Y ], first express E[X|Y = y] as a function of y.Law of iterated expectations:E[X]=E[E[X|Y ]](equality between two real numbers)2017 Law of Total VarianceVar(X|Y ) is a random variable that is a function of Y(the variance is taken with respect to X).To compute Var(X|Y ), first expressVar(X|Y = y)=E[(X − E[X|Y = y])2|Y = y]as a function of y.Law of conditional variances:Var(X)=E[Var(X|Y )] + Var(E[X|Y ])(equality between two real numbers)2118 Sum of a random number of iid RVsN discrete RV, Xii.i.d and independent of N .Y = X1+ ...+ XN. Then:E[Y ]=E[X]E[N ]Var(Y )=E[N]Var(X)+(E[X])2Var(N)2219 Covariance and CorrelationCov(X, Y )=E[(X − E[X])(Y − E[Y ])]= E[XY ] − E[X]E[Y ]• By definition, X, Y are uncorrelated ⇔ Cov(X, Y )=0.• If X, Y independent ⇒ X and Y are uncorrelated. (theconverse is not true)• In general, Var(X+Y)= Var(X)+ Var(Y)+ 2 Cov(X,Y)• If X and Y are uncorrelated, Cov(X,Y)=0 and Var(X+Y)=Var(X)+Var(Y)23Correlation Coefficient: (dimensionless)ρ =Cov(X, Y )σXσY∈ [−1, 1]ρ =0⇔ X and Y are uncorrelated.|ρ| =1⇔ X − E[X]=c[Y − E[Y ]] (linearly


View Full Document

MIT 6 041 - Probability Density Functions

Documents in this Course
Quiz 1

Quiz 1

5 pages

Quiz 2

Quiz 2

6 pages

Quiz 1

Quiz 1

11 pages

Quiz 2

Quiz 2

2 pages

Syllabus

Syllabus

11 pages

Quiz 2

Quiz 2

7 pages

Quiz 1

Quiz 1

6 pages

Quiz 1

Quiz 1

11 pages

Quiz 2

Quiz 2

13 pages

Quiz 1

Quiz 1

13 pages

Load more
Download Probability Density Functions
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Probability Density Functions and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Probability Density Functions 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?