Rice COMP 360 - Subdivision Matrices and Iterated Function Systems

Unformatted text preview:

Subdivision Matrices and Iterated Function SystemsRon GoldmanDepartment of Computer ScienceRice UniversityPart I: Lagrange SubdivisionLagrange Interpolation€ P1€ P2€ P0€ P3€ P(t) = Lkn(t)Pkk=0n∑ € L0n(t),K,Lnn(t) = Lagrange Basis FunctionsLagrange SubdivisionLagrange Subdivision Matrices -- Integer Nodes € L =L0n(0) L1n(0) L Ln−1n(0) Lnn(0)L0n(1/2) L1n(1/ 2) L Ln−1n(1/2) Lnn(1/ 2)L0n(1) L1n(1) L Ln−1n(1) Lnn(1)M M M M ML0n(n / 2) L1n(n /2) L Ln−1n(n /2) Lnn(n / 2)                =1 0 L 0 0L0n(1/2) L1n(1/2) L Ln−1n(1/ 2) Lnn(1/2)0 1 0 L 0M M M M ML0n(n /2) L1n(n / 2) L Ln−1n(n / 2) Lnn(n / 2)                € R =L0n(n / 2) L1n(n /2) L Ln−1n(n /2) Lnn(n /2)0 L 1 L 0M M M M ML0n2n −12      L1n2n−12      L Ln−1n2n−12      Lnn2n−12      0 0 L 0 1                (n odd)Lagrange Subdivision € P =P(0)MP(n)          = control points L,R = subdivision matrices € L∗ P =1 0 L 0 0L0n(1/ 2) L1n(1/2) L Ln−1n(1/ 2) Lnn(1/2)0 1 0 L 0M M M M ML0n(n /2) L1n(n / 2) L Ln−1n(n / 2) Lnn(n /2)                P(0)MP(n)          =P(0)P(1/2)P(1)MP(n / 2)                € R∗ P =L0n(n /2) L1n(n / 2) L Ln−1n(n / 2) Lnn(n / 2)0 L 1 L 0M M M M ML0n2n−12      L1n2n −12      L Ln−1n2n −12      Lnn2n −12      0 0 L 0 1                P(0)MP(n)          =Pn2      Pn+12      MP2n −12      P(n)                   Lagrange Subdivision by Iterated Function SystemsControl Points and Subdivision Matrices• € P =P0MPn          = control points• L,R = subdivision matricesIterated Function System•€ LP= P−1∗ L ∗ P•€ RP= P−1∗ R∗ PSubdivision•€ P∗ LP= P∗(P−1∗ L ∗ P) = L ∗ P•€ P∗ RP= P ∗(P−1∗ R∗ P) = R ∗ PPart II: Bezier SubdivisionDe Casteljau’s Algorithm012B(t)1− t∇∇∇P0P1P2P3♦♦1− t1− t1− t1− t1− tttttttB(t) = Bezier Curve 0 ≤ t ≤1 P0,K, Pn = Control PointsBezier Curve∇♦••b–tP0P1P2P3B(r)•••••Bezier Subdivision∇♦••t–aP0= Q0P1P2P3= R3Q3= R0Q1Q2R1R2•••••••••Q(t)R(t) Problem: Given P0,K, Pn, find Q0,K, Qn and R0,K, Rn.De Casteljau’s Subdivision Algorithm0121− rQ1∇Q0= P0P1P2R3= P31− r1− r1− r1− r1− rrrrrrrQ2Q3= R0R1R2B(t) = Bezier Curve 0 ≤ t ≤1 P0,K, Pn = Original Control PointsDe Casteljau’s Subdivision Algorithm0121/ 2Q1∇Q0= P0P1P2R3= P31/ 2Q2Q3= R0R1R21/ 21/ 21/ 21/ 21/ 21/ 21/ 21/ 21/ 21/ 2€ Qk= Bjk(1/2)Pjj=0k∑ € Rk= Bn− jn−k(1/2)Pk +n− jj=kn∑Bezier Subdivision Matrices € L =B00(1/2) 0 L 0B01(1/ 2) B11(1/2) L 0M M M MB0n(1/2) B1n(1/2) L Bnn(1/ 2)            =1 0 L 01212L 0M M M M12nn2nL12n              =kj( )2j        € R =B0n(1/ 2) B1n(1/2) L Bnn(1/ 2)0 B0n−1(1/2) L Bn−1n−1(1/2)M M M M0 0 L B00(1/ 2)            =12nn2nL12n012n−1L12n−1M M M M0 0 L 1                =€ n−kn− j( )2n− j       Bezier Subdivision € P =P0MPn          = control points L,R = subdivision matrices € L∗ P =B00(1/ 2) 0 L 0B01(1/2) B11(1/ 2) L 0M M M MB0n(1/ 2) B1n(1/ 2) L Bnn(1/2)            P0MPn          =Q0MQn          € R∗ P =B0n(1/2) B1n(1/ 2) L Bnn(1/2)0 B0n−1(1/ 2) L Bn−1n−1(1/ 2)M M M M0 0 L B00(1/2)            P0MPn          =R0MRn         Bezier Subdivision by Iterated Function SystemsControl Points and Subdivision Matrices• € P =P0MPn          = control points• L,R = subdivision matricesIterated Function System€ • LP= P−1∗ L ∗ P• RP= P−1∗ R∗ PSubdivision•€ P∗ LP= P∗(P−1∗ L ∗ P) = L ∗ P•€ P∗ RP= P ∗(P−1∗ R∗ P) = R ∗ PRecursive SubdivisionP01P0P00P01P001P000P010P0112P1P11P111P10P100P101P110 M€ L€ L€ L€ L€ L€ L€ L€ R€ R€ R€ R€ R€ R€ RControl Polygons Generated by Recursive SubdivisionSummarySubdivision Matrices• Lagrange -- Lagrange Basis Functions of Fixed DegreeEvaluated at the Half Integers• Bezier -- Bernstein Basis Functions of Degrees≤n Evaluated at € t = 1 / 2Iterated Function Systems• € P =P0MPn          = Control Points• L,R = Subdivision Matrices€ • LP= P−1∗ L ∗ P• RP= P−1∗ R∗ P = Iterated Function SystemFour Approaches To SubdivisionSubdivision Algorithms• Neville’s Algorithm• De Casteljau’s AlgorithmSubdivision Formulas• Lagrange Polynomials• Bernstein PolynomialsSubdivision Matrices• Lagrange Basis Functions• Bernstein Basis FunctionsSubdivision by Iterated Function Systems (N–Dimensions)€ • LP= P−1∗ L ∗ P• RP= P−1∗ R∗ PLifting the Control Points to Higher DimensionsQuadratics€ P*=P1P2P3 111          =x1y11x2y21x3y31          Cubics€ P*=P1P2P3P4 1111 0001            =x1y11 0x2y21 0x3y31 0x4y41 1            Quartics€ P*=P11 0 0P21 0 0P31 0 0P41 1 0P51 1 1                =x1y11 0 0x2y21 0 0x3y31 0 0x4y41 1 0x5y51 1 1               Iterated Function SystemsObservations•€ DetP1P2P3 111          = Detx1y11x2y21x3y31          = 2 Area(ΔP1P2P3)•€ P1,P2,P3 not collinear € ⇔ DetP1P2P3 111          ≠ 0 ⇔ (P*)−1


View Full Document

Rice COMP 360 - Subdivision Matrices and Iterated Function Systems

Documents in this Course
Radiosity

Radiosity

42 pages

Radiosity

Radiosity

22 pages

Load more
Download Subdivision Matrices and Iterated Function Systems
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Subdivision Matrices and Iterated Function Systems and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Subdivision Matrices and Iterated Function Systems 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?