DOC PREVIEW
MIT 12 002 - Concepts for Heat Convection

This preview shows page 1-2 out of 7 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 7 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 7 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 7 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

MIT OpenCourseWarehttp://ocw.mit.edu 12.002 Physics and Chemistry of the Earth and Terrestrial Planets Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.32 Concepts for Heat Convection Density and Temperature Mantle heat convection is driven by the presence of hotter rocks at great depth than are present at shallow depth. Of course, it is not the temperature itself, but rather the density of the rocks, that is important for convection. Density decreases as a function of temperature and, for a given package of rock, can be related to temperature through the coefficient of thermal expansion, α: ρ = ρo (1-αT) or dρ = - ρo α dT where ρo is the density of the material at T=0. The coefficient of thermal expansion is generally pretty small, so the change in density due to temperature changes in the earth or planets is very small compared to the total density. For example, for the earth’s upper mantle, α is around 3.10-5 °C-1. For a temperature change of 2000°C, the change in density would be around 3%. Density depends much more strongly on pressure than on temperature. In the earth’s mantle, density increases downward because the increasing pressure has a much larger effect on density than does the increasing temperature. This leads rise to the concept of the “adiabatic gradient”. The Mantle Adiabat Suppose that we take a package of hot, high pressure mantle from deep in the mantle (1) and bring it to a shallower level (2) without letting it exchange any heat with the surrounding rocks. Because the pressure drops as the rock is uplifted through the mantle, the volume expands and its temperature and its density decrease. This change in temperature as a function of depth is the adiabatic gradient. If the adiabatic gradient and the geothermal gradient are identical, then the uplifted rock at (2) will be at the same temperature as its surroundings before and after uplift. Now suppose we take a second package of rock at (2) and bring it deeper into the mantle (1), also without letting it exchange heat with the surroundings (this is called adiabatic transport). Its temperature and its density will likewise increase along the same adiabatic gradient. If the33 adiabatic gradient and the geothermal gradient are identical, then this rock will also be at the same temperature as its surroundings having been carried to a greater depth. This means that for a geothermal gradient that is equal to the adiabatic gradient, moving material around in the mantle (without letting it gain or lose heat) does not change the temperature or density of the mantle as a function of depth. Thus it does not change the potential energy of the mantle so that there is no energy available to drive motion in the mantle. Now consider a geothermal gradient in the mantle that is greater than the geothermal gradient. A rock uplifted from (1) to (1*) via adiabatic transport will decrease in temperature and density, as before. However, after transport, it will be hotter than the surrounding rocks, but is at the same pressure as its surroundings so it will have a lower density. Likewise a rock transported adiabatically to greater depth, from (2) to (2*), will increase in temperature and density. But, it will be colder and denser than surrounding rocks. Thus vertical motion of rock packages in a mantle where the thermal gradient is greater than the adiabat will create make the mantle colder at the bottom and hotter near to the top. It will also change the density structure so that rocks near the bottom are denser and rocks near the top are less dense. In doing this it decreases the potential energy of the mantle. (Remember PE=ρgh Δz for a slice of material of thickness Δz and at height h above some reference horizon.)34 This means that if the thermal gradient is greater than the adiabatic gradient, there is energy available to drive vertical motion of rock packages in the mantle. This thermally-driven process of overturn is what is known as thermal convection. It is important to notice that it is only the difference in temperature between the geotherm (temperature profile in the earth as a function of depth) and the adiabat (the curve whose slope is the adiabatic gradient at all depths) that can be used to drive convection. A mantle with a geotherm at or below the adiabat cannot convect and can only lose heat by the slow process of conduction. Finally, if rising or falling of a rock package in the mantle is not instantaneous, a rising package will lose some of its excess heat to the surrounding mantle during ascent, and vice versa. Thus its temperature will follow a path somewhere between the adiabat and the mantle geotherm. If the package rises quickly or if the diffusion of heat is slow (meaning that the thermal diffusivity of the material, κ, is small) then it will lose only a little heat and its path will be close to the adiabat. If it rises very slowly or has rapid heat diffusion, its path will lie closer to the geotherm. This means that rapid rates of thermal conduction/diffusion in the mantle act to hinder convection.35 Viscous Deformation At the high temperatures needed for convection, planetary mantle material deforms ductiley. The mathematically simplest form of ductile deformation, which we will use here, involves “linear” or “Newtonian” viscosity. For a layer of material with viscosity µ, undergoing simple shear with velocity u as shown below, the stress (force per unit area, typically measured in units of Pascals, or Pa, defined as N/m2 or kg/ms2) is linearly proportional to the spatial gradient of velocity. x dz du z z+dz � z If the velocity does not change along the along the length of the channel (ie ∂u/∂x = 0) then stress along a horizontal plane is related to the velocity gradient by:36 σxz = µ ∂u/∂z This relationship shows that the stress required to drive flow increases with linearly with the viscosity of the material. (For non-Newtonian viscosity, there is a power-law relationship between stress and strain.) The Rayleigh Number The Rayleigh number is a dimensionless number that describes the vigor of convection within a convecting layer. It is essentially the ratio of the parameters that increase the vigor of convection to those that inhibit convection. Consider a potentially convecting layer that looks something like this: where the rolls show upwelling and downwelling limbs of a convective


View Full Document

MIT 12 002 - Concepts for Heat Convection

Download Concepts for Heat Convection
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Concepts for Heat Convection and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Concepts for Heat Convection 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?