DOC PREVIEW
CMU CS 10601 - Lecture 14 MCMC

This preview shows page 1-2-3-26-27-28 out of 28 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 28 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 28 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 28 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 28 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 28 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 28 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 28 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Review•Parallel importance sampling!bias due to 1/normalizer!particle filter = recursive parallel IS•MCMC!randomized search for high P(x)!burn-in, mixing!approx. iid: { Xt, Xt+", Xt+2", Xt+3", … }!use to construct estimator of EP(g(X))1Review•Metropolis-Hastings!way to design chain w/ stationary dist’n P(X)!proposal distribution Q(X’ | X)!e.g., random walk N(X’ | X, #2I)!accept w.p. min(1, )!tension btwn long moves, high accept rateMH algorithm•Initialize X1 arbitrarily•For t = 1, 2, …:!Sample X’ ~ Q(X’ | Xt)!Compute p =!With probability min(1, p), set Xt+1 := X’!else Xt+1 := Xt•Note: sequence X1, X2, … will usually contain duplicates182MH example!!!"#$""#$!!!!"#%!"#&!"#'!"#(""#("#'"#&"#%!"!()'$*+,-+.*/3MH example!! !"#$ " "#$ !!!!"#$""#$!4In example•g(x) = x2•True E(g(X)) = 0.28…•Proposal: •Acceptance rate 55–60%•After 1000 samples, minus burn-in of 100:final estimate 0.282361final estimate 0.271167final estimate 0.322270final estimate 0.306541final estimate 0.308716Q(x!| x)=N(x!| x, 0.252I)5Gibbs sampler•Special case of MH•Divide X into blocks of r.v.s B(1), B(2), …•Proposal Q:!pick a block i uniformly!sample XB(i) ~ P(XB(i) | X¬B(i))•Useful property: acceptance rate p = 16Gibbs example!!"#!!"$!!"% !!"&! !"&!"%!"$ !"#' '"&!!"#!!"$!!"%!!"&!!"&!"%!"$!"#7Gibbs example!!"#!! !$"# $ $"#! !"#!!!$"#$$"#!8Gibbs failure example!!!" !#$# "!!%!"!&!#!'$'#&"%9Relational learning•Linear regression, logistic regression: attribute-value learning!set of i.i.d. samples from P(X, Y)•Not all data is like this!an attribute is a property of a single entity!what about properties of sets of entities?10Application: document clustering11Application: recommendations12Latent-variable models13Best-known LVM: PCA•Suppose Xij, Uik, Vjk all ~ Gaussian!yields principal components analysis!or probabilistic PCA!or Bayesian PCA14PCA: the picture15PCA: cartoon example123456…ABCDEF…110010…011000…110110…100110…010100…011101……………………MovieUser16PCA: cartoon examplex1x2x3...xnData matrix X!Compressed matrix Uu1u2u3...unv1 … vkBasis matrix VT17PCA: cartoon examplex1x2x3...xnData matrix X!Compressed matrix Uu1u2u3...unv1 … vkBasis matrix VTrows of VT span the low-rank space17Interpreting PCAu1u2u3...unv1 … vkusersmoviesbasis weightsbasis vectors18Interpreting PCAu1u2u3...unv1 … vkusersmoviesbasis weightsbasis vectorsBasis vectors represent movies that vary togetherWeights say how much each user cares about each type of movie18Mean subtraction!Uik ~ N(0, $2)!Vjk ~ N(0, $2)!Xij ~ N(Ui!Vj, #2)>> mu = mean(X(:));>> colmu = mean(X - mu);>> rowmu = mean(X' - mu)';>> X = X - mu - repmat(colmu, size(X,1), 1) - repmat(rowmu, 1, size(X,2));19Data weights•Let Wij =•Likelihood ! prior = •More generally, Wij ! 020Another use of PCAface images from Groundhog Day, extracted by Cambridge face DB project21Image matrixx1x2x3...xnimagespixels22Result of factoringu1u2u3...unv1 … vkimagespixelsbasis weightsbasis vectorsBasis vectors are often called “eigenfaces”23Eigenfacesimage credit: AT&T Labs Cambridge24PCA: finding the MLE•PCA: !Uik ~ N(0, $2)!Vjk ~ N(0, $2)!Xij ~ N(Ui!Vj, #2)!#/$ % 025PCA & SVD•The singular value decomposition is!X = R & ST!R, S orthonormal; & ! 0 diagonal!All matrices can be expressed this way!See svd, svds in Matlab•So, PCA is U = V


View Full Document

CMU CS 10601 - Lecture 14 MCMC

Documents in this Course
lecture

lecture

40 pages

Problem

Problem

12 pages

lecture

lecture

36 pages

Lecture

Lecture

31 pages

Review

Review

32 pages

Lecture

Lecture

11 pages

Lecture

Lecture

18 pages

Notes

Notes

10 pages

Boosting

Boosting

21 pages

review

review

21 pages

review

review

28 pages

Lecture

Lecture

31 pages

lecture

lecture

52 pages

Review

Review

26 pages

review

review

29 pages

Lecture

Lecture

37 pages

Lecture

Lecture

35 pages

Boosting

Boosting

17 pages

Review

Review

35 pages

lecture

lecture

32 pages

Lecture

Lecture

28 pages

Lecture

Lecture

30 pages

lecture

lecture

29 pages

leecture

leecture

41 pages

lecture

lecture

34 pages

review

review

38 pages

review

review

31 pages

Lecture

Lecture

41 pages

Lecture

Lecture

15 pages

Lecture

Lecture

21 pages

Lecture

Lecture

38 pages

Notes

Notes

37 pages

lecture

lecture

29 pages

Load more
Download Lecture 14 MCMC
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture 14 MCMC and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture 14 MCMC 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?