DOC PREVIEW
Berkeley COMPSCI 294 - Segmentation of Subspace Arrangements III

This preview shows page 1-2-20-21 out of 21 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 21 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 21 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 21 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 21 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 21 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

OutlineMultibody Epipolar ConstraintMultibody Fundamental MatrixGPCA-VotingNoise issueGPCA-VotingComparisonRobust GPCAOutlier IssueRobustifying GPCA via Influence and MVTComparisonApplicationsAffine Motion DetectionVanishing-Point DetectionConclusion and DiscussionConclusionFuture DirectionsOutline Multibody Epipolar Constraint GPCA-Voting Robust GPCA Applications ConclusionSegmentation of Subspace ArrangementsIII – Robust GPCAAllen Y. YangBerkeley CS 294-6, Lecture 25Dec. 3, 2006Allen Y. Yang Segmentation of Subspace Arrangements III – Robust GPCAOutline Multibody Epipolar Constraint GPCA-Voting Robust GPCA Applications ConclusionGeneralized Principal Component Analysis (GPCA): (an overview)x ∈ V1∪ V2⇒ (x3= 0)or(x1= x2= 0)⇒ {x1x3= 0, x2x3= 0}.Veronese Map: Given N samples x1, . . . , xN∈ R3,L2.= [ν2(x1), . . . , ν2(xN)] ∈ RM[3]2×N=··· (x1)2······ (x1x2) ······ (x1x3) ······ (x2)2······ (x2x3) ······ (x3)2···V1V2R3x3x1x2The null space of L2isc1= [0, 0, 1, 0, 0, 0]c2= [0, 0, 0, 0, 1, 0]⇒p1= c1ν2(x) = x1x3p2= c2ν2(x) = x2x3P(x).= [p1(x) p2(x)] = [x1x3, x2x3], then∇xP = [∇xp1∇xp2] =x300 x3x1x2.∇xP at one sample per subspace gives normal vectors that span V⊥1and V⊥2:x = [a, b, 0]T∈ V1⇒ ∇xP|x=h0 00 0a bi∈ V⊥1.y = [0, 0, c]T∈ V2⇒ ∇xP|y=hc 00 c0 0i∈ V⊥2.Segment samples and recover V1and V2.Allen Y. Yang Segmentation of Subspace Arrangements III – Robust GPCAOutline Multibody Epipolar Constraint GPCA-Voting Robust GPCA Applications Conclusion1Multibody Epipolar ConstraintMultibody Fundamental Matrix2GPCA-VotingNoise issueGPCA-VotingComparison3Robust GPCAOutlier IssueRobustifying GPCA via Influence and MVTComparison4ApplicationsAffine Motion DetectionVanishing-Point Detection5Conclusion and DiscussionConclusionFuture DirectionsAllen Y. Yang Segmentation of Subspace Arrangements III – Robust GPCAOutline Multibody Epipolar Constraint GPCA-Voting Robust GPCA Applications ConclusionMultibody Fundamental MatrixGiven K rigid bodies, an image correspondence (x1, x2) satisfies:f (x1, x2) = (xT2F1x1)(xT2F2x1) · · · (xT2FKx1) = 0.Two ways to rewrite the bilinear constraint:1f (x1, x2) = {(x1⊗ x2)TFs1} · · · {(x1⊗ x2)TFsK}.We treat z = x1⊗ x2∈ R9as the new feature vector, thenf (x1, x2) = νK(x1⊗ x2)Tc.2f (x1, x2) = νK(x2)TFνK(x1), where F ∈ RM[3]K×M[3]K.Which representation is more compact?1K = 2: For c, M[9]2=2+9−12= 45. For F , (M[3]2)2= 62= 36.2K = 4: For c, M[9]4= 495. For F , (M[3]4)2= 152= 225.Choose the second one.F is called the multibody fundamental matrix, comparing to the (single) fundamental matrix F .Allen Y. Yang Segmentation of Subspace Arrangements III – Robust GPCAOutline Multibody Epipolar Constraint GPCA-Voting Robust GPCA Applications ConclusionSegmentation of Multibody Motion∂∂x2f (x1, x2) =PKi=1Qj6=ixT2Fjx1(Fix1).Suppose (x1, x2) on Object k, thenQj6=ixT2Fjx1= 0 for all i 6= k:∂∂x2f (x1, x2) =Yj6=kxT2Fjx1(Fkx1) ∼ (Fkx1) ∼ l2k.Hence,∂∂x2f (x1, x2) ⊥ e2k.Given K rigid body motions, there exist K different epipoles e1, · · · , eKin the second view such that:(eT1l)(eT2l) · · · (eTKl) = 0,which is a standard subspace-segmentation problem.Allen Y. Yang Segmentation of Subspace Arrangements III – Robust GPCAOutline Multibody Epipolar Constraint GPCA-Voting Robust GPCA Applications ConclusionGPCA-Voting: A Stable ImplementationPDA on noisy dataV1V2RD=⇒νn(x)Null(Ln)=⇒=⇒∇xV1V2RM[D]nRM[D]np(x) = cTxRDThe noise affects the algebraic PDA process:1The data matrix LK(V ) is always full-rank.Solution: Use SVD to estimate Null(LK).2How to choose one point per subspace as the representative?Solution: Rule of thumb is to pick samples far away from the origin and intersections.3Even with a good sample, evaluation of ∇P is still perturbed away from the true position.Solution: We propose a voting algorithm to evaluate ∇P at all samples.Allen Y. Yang Segmentation of Subspace Arrangements III – Robust GPCAOutline Multibody Epipolar Constraint GPCA-Voting Robust GPCA Applications ConclusionA Voting SchemeGoal:1Averaging ∇xP at more samples of a subspace.2Recover correct rank of ∇xP.Difficulty: Do not know which samples belong to the same subspace, yet.GPCA-Voting (a simple example)1Assume subspaces (2, 1, 1) in R3.2hI(3) = 4 vanishing polynomials ⇒ ∇xP ∈ R3×4.3Vote on rank-1 & rank-2 codimensio ns with a tolerance threshold τ4Average normal vectors associated with highest votes.5(optional) Iteratively refine the segmentation via EM or K-Subspaces.Allen Y. Yang Segmentation of Subspace Arrangements III – Robust GPCAOutline Multibody Epipolar Constraint GPCA-Voting Robust GPCA Applications ConclusionSimulation Results1Illustrations(a) 8% (b)12%(c)16%Figure: (2, 1, 1) ∈ R3.(a) 8% (b)12%(c)16%Figure: (2, 2, 1) ∈ R3.2Segmentation simulationsTable: Segmentation errors. 4% Gaussian noise is added.Subspace Dimensions EM K-Subspaces PDA Voting Voting+K-Subspaces(2, 2, 1) in R329% 27% 13.2% 6.4% 5.4%(4, 2, 2, 1) in R553% 57% 39.8% 5.7% 5.7%(4, 4, 4, 4) in R520% 25% 25.3% 17% 11%Allen Y. Yang Segmentation of Subspace Arrangements III – Robust GPCAOutline Multibody Epipolar Constraint GPCA-Voting Robust GPCA Applications ConclusionOutlier IssueGPCA process:V1V2RD=⇒νn(x)Null(Ln)p(x) = cTx=⇒=⇒∇xRank(Ln) = M[D]n− hI(n)V1V2RM[D]nRM[D]nRDBreakdown of GPCA is 0% b eca use breakdown of PCA is 0%:a large outlier can arbitrarily perturb Null(Ln)V1V2RD=⇒νn(x)Null(Ln)=⇒RM[D]np(x) = cTxRM[D]n⇒⇒ Seek a robust PCA to estimate Null(Ln), where Ln= [νn(x1), · · · , νn(xN)].Allen Y. Yang Segmentation of Subspace Arrangements III – Robust GPCAOutline Multibody Epipolar Constraint GPCA-Voting Robust GPCA Applications ConclusionThree approaches to tackle outliers:1Probability-based: small-probability samples.Probability plots: [Healy 1968, Cox 1968]PCs: [Rao 1964, Ganadesikan & Kettenring 1972]M-estimators: [Huber 1981, Campbell 1980]multivariate trimming (MVT): [Ganadesikan & Kettenring 1972]2Influence-based: large influence on model parameters.Parameter difference with and without a sample: [Hampel et al.1986, Critchley 1985]3Consensus-based: not consistent with models of high consensus.Hough: [Ballard 1981, Lowe 1999]RANSAC: [Fischler & Bolles 1981, Torr 1997]Least Median Estimate (LME): [Rousseeuw 1984, Steward 1999]Allen Y. Yang Segmentation of


View Full Document

Berkeley COMPSCI 294 - Segmentation of Subspace Arrangements III

Documents in this Course
"Woo" MAC

"Woo" MAC

11 pages

Pangaea

Pangaea

14 pages

Load more
Download Segmentation of Subspace Arrangements III
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Segmentation of Subspace Arrangements III and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Segmentation of Subspace Arrangements III 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?