DOC PREVIEW
Berkeley MATH 1A - Homework

This preview shows page 1-2 out of 7 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 7 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 7 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 7 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Homework SolutionsMath1A Prof. OlssonFall 2008 Week 5Section 2.45.F (y) =1y2−3y4y + 5y3=−3y3+−14y+ 5yF0(y) =9y4+14y2+ 517.y =r21 +√rUsing the Quotient Rule,dydr=(1 +√r) 2r − r212√r(1 +√r)2=2r +32r√r(1 +√r)221.f (θ) =sec θ1 + sec θ=1cos θ + 1Using the Quotient Rule,f0(θ) =(cos θ + 1) · 0 − 1 · (−sin θ)(cos θ + 1)2=sin θ(cos θ + 1)225.f (x) =xx +cx=x2x2+ cUsing the Quotient Rule,f0(x) =(x2+ c) 2x − x2· 2x(x2+ c)2=2cx(x2+ c)229.The tangent line to the curve y = tan x at the pointπ4, 1has slopedydx= sec2π4= 1 + tan2π4= 21so using the point-slope equation for the line,y − 1 = 2x −π435.H (θ) = θ sin θUsing the Product Rule,H0(θ) = θ cos θ + sin θH00(θ) = −θ sin θ + 2 cos θ41.Using f (5) = 1, f0(5) = 6, g (5) = −3, and g0(5) = 2a)(fg)0(5) = f (5) g0(5) + f0(5) g (5) = 1 · 2 + 6 (−3) = −16b)fg0(5) =g (5) f0(5) − f (5) g0(5)g (5)2=−3 · 6 − 1 · 2(−3)2=−209c)gf0(5) =f (5) g0(5) − g (5) f0(5)f (5)2=1 · 2 − (−3) · 612= 2046.a)y = x2f (x) ⇒dydx= x2f0(x) + 2xf (x)b)y =f (x)x2⇒dydx=x2f0(x) − 2xf (x)(x2)2=xf0(x) − 2f (x)x3c)y =x2f (x)⇒dydx=2xf (x) − x2f0(x)f (x)2d)y =1 + xf (x)√x2dydx=√x (xf0(x) + f (x)) − (1 + xf (x))12√x√x2=2x2f0(x) + xf (x) − 12x√xSection 2.55.y =√u and u = sin x sodydx=12√ucos x =cos x2√sin x9.g (t) =1(t4+ 1)3g0(t) =−3(t4+ 1)4· 4t3=−12t3(t4+ 1)417.y = (2x − 5)48x2− 5−3dydx= (2x − 5)4h−38x2− 5−4· 16xi+ 4 (2x − 5)3· 2 ·8x2− 5−3= (2x − 5)38x2− 5−4−32x2+ 240x − 4035.y = cot2(sin θ)dydθ= 2 cot (sin θ) ·−csc2(sin θ) · cos θ39.The tangent line to the curve y = (1 + 2x)10at the point (0, 1) has slopedydx= 10 (1 + 2x)9· 2 = 20so using the point-slope equation for the line,y − 1 = 20 (x − 0)349.a)Using g (1) = 2, g0(1) = 6, and f0(2) = 5h (x) = f (g (x)) ⇒ h0(1) = f0(g (1)) · g0(1) = 5 · 6 = 30b)Using f (1) = 3, f0(1) = 4, and g0(3) = 9H (x) = g (f (x)) ⇒ H0(1) = g0(f (1)) · f0(1) = 9 · 4 = 3654.a)F (x) = f (xα) ⇒ F0(x) = f0(xα) · αxα−1b)G (x) = f (x)α⇒ G0(x) = α · f (x)α−1· f0(x)57.f (x) = 2 sin x + sin2xf0(x) = 2 cos x + 2 sin x cos x = 2 cos x (1 + sin x)The tangent line will be horizontal when its slope is 0, so either cos x = 0,which occurs at x =k +12π for integers k, or 1+sin x = 0, which occurs atx =k +12π for odd integers k. Therefore, the tangent lines passing throughthe pointsk +12π, 3for even integers k and the pointsk +12π, −1for odd integers k are horizontal.67.If θ is measured in degrees, then let ψ =π180θ be the corresponding radianangle. Using the Chain Rule,ddθsin ψ = cos ψ ·dψdθ=π180· cos ψSection 2.63.x3+ x2y + 4y2= 63x2+ 2xy + x2dydx+ 8ydydx= 04dydx=−3x2− 2xyx2+ 8y10.y sinx2= x siny2y cosx2· 2x + sinx2dydx= x cosy2· 2ydydx+ siny2dydx=2xy cos (x2) − sin (y2)2xy cos (y2) − sin (x2)11.tanxy= x + ysec2xy·y · 1 − xdydxy2= 1 +dydxdydx=yy2sec2xy− 1xy2sec2xy+ 1=y − y2cos2xyx + y2cos2xy19.The tangent line to the curve with equation x2+ y2= (2x2+ 2y2− x)2through the point0,12has slope given by2x + 2ydydx= 22x2+ 2y2− x4x + 4ydydx− 12 · 0 + 2 ·12dydx= 2 2 · 02+ 2122− 0!4 · 0 + 4 ·12dydx− 1dydx= 2 ·122dydx− 1dydx= 1Using the point-slope form of the equation of the line,y −12= 1 (x − 0)25.x3+ y3= 153x2+ 3y2dydx= 0 ⇒dydx=−x2y26x + 6ydydx2+ 3y2d2ydx2= 02x + 2y−x2y22+ y2d2ydx2= 0d2ydx2=−2x4y3− 2xy2=−2x4− 2xy3y532.The tangent line to the ellipsex2a2+y2b2= 1through the point (x0, y0) has slope given by2xa2+2yb2dydx= 0dydx=−b2x0a2y0Using the point-slope form for the equation of the liney − y0=−b2x0a2y0(x − x0)y0y − y20b2=−x0x + x20a2x0xa2+y0yb2=x20a2+y20b2= 135.For the curve with equation y = cx2, the slope is given bydydx= 2cxFor the curve with equation x2+ 2y2= k, the slope is given by2x + 4ydydx= 0 ⇒dydx=−x2y6The product of the two slopes at the point (x, y) is2cx−x2y=−cx2y=−yy= −1so the tangent lines to the two curves through the point (x, y) are perpen-dicular, and the two curves form orthogonal trajectories of each other.39.The ellipse with equation x2− xy + y2= 3 crosses the x-axis when y = 0, sox =√3 or x = −√3. The slope of the ellipse at point (x, y) is given by2x − y − xdydx+ 2ydydx= 0 ⇒dydx=2x − yx − 2yso the slope of the tangent line through√3, 0is 2. The slope of the tangentline through−√3, 0is also 2, so the lines are


View Full Document

Berkeley MATH 1A - Homework

Download Homework
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Homework and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Homework 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?