DOC PREVIEW
Berkeley MATH 1A - Homework

This preview shows page 1-2 out of 7 pages.

Save
View full document
Premium Document
Do you want full access? Go Premium and unlock all 7 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Homework Solutions Math1A Prof Olsson Fall 2008 Week 5 Section 2 4 5 F y 1 3 4 2 y y 3 14 y 5y 3 3 5y y y F 0 y 17 y 9 14 2 5 4 y y r2 1 r Using the Quotient Rule dy dr 1 r 2r r2 2 1 r 21 f 1 2 r 2r 32 r r 2 1 r sec 1 1 sec cos 1 Using the Quotient Rule f 0 cos 1 0 1 sin sin 2 cos 1 cos 1 2 25 f x x x c x x2 x2 c Using the Quotient Rule f 0 x x2 c 2x x2 2x 2cx 2 2 2 x c x c 2 29 The tangent line to the curve y tan x at the point dy sec2 1 tan2 2 dx 4 4 1 1 4 has slope so using the point slope equation for the line y 1 2 x 4 35 H sin Using the Product Rule H 0 cos sin H 00 sin 2 cos 41 Using f 5 1 f 0 5 6 g 5 3 and g 0 5 2 a f g 0 5 f 5 g 0 5 f 0 5 g 5 1 2 6 3 16 b 0 g 5 f 0 5 f 5 g 0 5 3 6 1 2 20 f 5 2 2 g 9 g 5 3 c 0 1 2 3 6 g f 5 g 0 5 g 5 f 0 5 20 5 2 f 12 f 5 46 a y x2 f x dy x2 f 0 x 2xf x dx b y f x dy xf 0 x 2f x x2 f 0 x 2xf x x2 dx x3 x2 2 c y x2 dy 2xf x x2 f 0 x f x dx f x 2 d y 1 xf x x 2 dy dx x xf 0 x f x 1 xf x 2 1 x 2x2 f 0 x xf x 1 2 2x x x Section 2 5 5 y u and u sin x so dy 1 cos x cos x dx 2 u 2 sin x 9 g t g 0 t 1 t4 1 3 12t3 3 3 4t t4 1 4 t4 1 4 17 3 y 2x 5 4 8x2 5 h i 4 3 dy 2x 5 4 3 8x2 5 16x 4 2x 5 3 2 8x2 5 dx 4 2x 5 3 8x2 5 32x2 240x 40 35 y cot2 sin dy 2 cot sin csc2 sin cos d 39 The tangent line to the curve y 1 2x 10 at the point 0 1 has slope dy 10 1 2x 9 2 20 dx so using the point slope equation for the line y 1 20 x 0 3 49 a Using g 1 2 g 0 1 6 and f 0 2 5 h x f g x h0 1 f 0 g 1 g 0 1 5 6 30 b Using f 1 3 f 0 1 4 and g 0 3 9 H x g f x H 0 1 g 0 f 1 f 0 1 9 4 36 54 a F x f x F 0 x f 0 x x 1 b G x f x G0 x f x 1 f 0 x 57 f x 2 sin x sin2 x f 0 x 2 cos x 2 sin x cos x 2 cos x 1 sin x The tangent line will be horizontal when its slope is 0 so either cos x 0 1 which occurs at x k 2 for integers k or 1 sin x 0 which occurs at x k 12 for odd k Therefore the tangent lines passing through integers 1 the points k 2 3 for even integers k and the points k 21 1 for odd integers k are horizontal 67 If is measured in degrees then let angle Using the Chain Rule 180 be the corresponding radian d d sin cos cos d d 180 Section 2 6 3 x3 x2 y 4y 2 6 3x2 2xy x2 dy dy 8y 0 dx dx 4 dy 3x2 2xy dx x2 8y 10 y sin x2 x sin y 2 dy dy y cos x2 2x sin x2 x cos y 2 2y sin y 2 dx dx 2 2 dy 2xy cos x sin y dx 2xy cos y 2 sin x2 11 x tan x y y dy y 1 x dx x dy 2 sec 1 2 y y dx y 2 2 x 2 x y y cos sec 1 y2 y y dy x dx sec2 xy 1 x y 2 cos2 xy y2 19 2 The tangent line to the curve with equation x2 y 2 2x2 2y 2 x through the point 0 12 has slope given by dy dy 2 2 2x 2y 2 2x 2y x 4x 4y 1 dx dx 2 1 1 dy 1 dy 2 2 0 2 2 2 0 2 0 4 0 4 1 2 dx 2 2 dx dy 1 dy 2 2 1 dx 2 dx dy 1 dx Using the point slope form of the equation of the line y 1 1 x 0 2 25 x3 y 3 1 5 dy dy 0 dx dx 2 dy d2 y 6x 6y 3y 2 2 dx dx 2 2 2 x 2d y y 2x 2y y2 dx2 3x2 3y 2 x2 y2 0 0 4 2 xy3 2x d2 y 2x4 2xy 3 dx2 y2 y5 32 The tangent line to the ellipse x2 y 2 2 1 a2 b through the point x0 y0 has slope given by 2x 2y dy 2 0 a2 b dx dy b2 x0 2 dx a y0 Using the point slope form for the equation of the line y y0 b2 x0 x x0 a2 y 0 y0 y y02 x0 x x20 b2 a2 x0 x y0 y x20 y02 2 1 a2 b2 a2 b 35 For the curve with equation y cx2 the slope is given by dy 2cx dx For the curve with equation x2 2y 2 k the slope is given by 2x 4y dy dy x 0 dx dx 2y 6 The product of the two slopes at the point x y is x cx2 y 2cx 1 2y y y so the tangent lines to the two curves through the point x y are perpendicular and the two curves form orthogonal trajectories of each other 39 The ellipse with equation x2 xy y 2 3 crosses the x axis when y 0 so x 3 or x 3 The slope of the ellipse at point x y is given by dy dy 2x y dy 2y 0 dx dx dx x 2y so the slope of the tangent line through 3 0 is 2 The slope of the tangent line through 3 0 is also 2 so the lines are parallel 2x y x 7


View Full Document

Berkeley MATH 1A - Homework

Download Homework
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Homework and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Homework and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?