DOC PREVIEW
CMU CS 10601 - review

This preview shows page 1-2-3-26-27-28 out of 28 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 28 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 28 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 28 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 28 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 28 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 28 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 28 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Review•Multivariate Gaussian!N(X | ", #) = (1/!|2pi #|) exp{–0.5 (x–")T #–1 (x–")}1Multivariate Gaussians!! !"#" !$!#%&##%&""%&!!%&$$%&'"3 = [-.5; 0]"1 = [0; 3]"2 = [2; 1]#i = UDiUTU = !2 / 2!2 / 2!2 / 2–!2 / 2D2 = diag([.02 .26])D1 = diag([.2 .08])D3 = diag([.1 .1])note UTU = I2Review•Naïve Bayes, Gaussian NB, Fisher model:!all lead to linear discriminants!w0 + "j wj Xj # 0 or w0 + wTX # 0!formulas for w0, w depend on which model3Fisher linear discriminant!2 2 6!2024figure from book4Fisher w/ bad #figure from book!2 2 6!20245Features•Can generalize to use features of X:!w0 + "j wj $j(X) # 0!$j(X) are features•Why might we want to do so?6Use of $j(X)x1x2!1 0 1!1017Use of $j(X)φ1φ20 0.5 100.518Lots of discriminants•One of most important types of classifier•Consequently, many ways to train LDs!based on different assumptions about data•We saw 3 so far! •Another one: coming up soon9Application: USPS digits10Class means for 0 and 1Class means5 10 15 20 255101520255 10 15 20 2551015202511A linear discriminantA linear separator5 10 15 20 2551015202512Application: fMRI classification“dog”brain: Patrick J. Lynch, C. Carl Jaffe (CC att. 2.5)fMRI: Mitchell et alAnother example of information integration7co-occurs(dog,cat) = 1co-occurs(dog,walk) = 1co-occurs(dog,physics) = 0co-occurs(dog,cupcake) = 0:-):-));->fMRIfMRIfMRI(Word + Picture) stimulusDogText CorpusA fMRI brain imaging experiment.Augmented with side information about the stimulus. Brain activityMitchell et al. (2008) Predicting Human Brain Activity Associated with the Meaning of Nouns. Science.13Class probability•We showed:!log P(Y=1 | X) – log P(Y=0 | X) = •This implies!log P(Y = 1) = 14Sigmoid: %(z) = 1/(1+exp(–z))!! !" # " !##$"#$!#$%#$&'()15NB = MLE (or MAP)•P(Y=1 | X) = %(z)!z = w0 + " wj Xj•NB is one algorithm for finding w•NB = maximum likelihood in this model!arg max16Conditional likelihood•Another: maximum conditional likelihood!given data (X1, Y1), …, (XN, YN)!arg max•Same model, different training criterion•Cond. MLE for logistic linear discriminant: logistic regression17Discussion•maxw P(X, Y | w) vs. maxw P(Y | X, w)•We’ve seen cond. MLE before:•Why choose one?!MLE:!cond. MLE:18Generative vs discriminative•Same trick works for any graphical model!if we know we’re always going to be asking same query (Y given X1…XM), optimize for it!max•Can improve performance, but also more risk of overfitting19Logistic regression•given data (X1, Y1), …, (XN, YN)•arg maxw $i P(Yi | Xi, w)20Neg. log likelihood!! !" !# $ # " !$%#&"'!()*+!,-./0)1/2/*+21Example!! !"#" !$##%!#%&#%'#%("22Weight spacew0w1–5 10!! !" # " !##$%&!! !" # " !##$%&!! !" # " !##$%&!! !" # " !##$%&!! !" # " !##$%&!! !" # " !##$%&!! !" # " !##$%&!! !" # " !##$%&!! !" # " !##$%&!! !" # " !##$%&!! !" # " !##$%&!! !" # " !##$%&!! !"#" !##$%&!! !"#" !##$%&!! !"#" !##$%&!! !"#" !##$%&–6423(X, Y) = (1.2, –1)!!"!#"!$!%!&"&%"!#"#!'"'#!()*+,-24(X, Y) = (1.2, –1)!"!#!$ !% " % $ & '!&!$!%"%25(X, Y) = (–1, 1)!"!#!$ !% " % $ & '!&!$!%"%26(X, Y) = (2, 1)!"!#!$ !% " % $ & '!&!$!%"%27–log(P(Y1..3 | X1..3, W))!"!#!$ !% " % $ &


View Full Document

CMU CS 10601 - review

Documents in this Course
lecture

lecture

40 pages

Problem

Problem

12 pages

lecture

lecture

36 pages

Lecture

Lecture

31 pages

Review

Review

32 pages

Lecture

Lecture

11 pages

Lecture

Lecture

18 pages

Notes

Notes

10 pages

Boosting

Boosting

21 pages

review

review

21 pages

Lecture

Lecture

31 pages

lecture

lecture

52 pages

Review

Review

26 pages

review

review

29 pages

Lecture

Lecture

37 pages

Lecture

Lecture

35 pages

Boosting

Boosting

17 pages

Review

Review

35 pages

lecture

lecture

32 pages

Lecture

Lecture

28 pages

Lecture

Lecture

30 pages

lecture

lecture

29 pages

leecture

leecture

41 pages

lecture

lecture

34 pages

review

review

38 pages

review

review

31 pages

Lecture

Lecture

41 pages

Lecture

Lecture

15 pages

Lecture

Lecture

21 pages

Lecture

Lecture

38 pages

Notes

Notes

37 pages

lecture

lecture

29 pages

Load more
Download review
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view review and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view review 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?