DOC PREVIEW
UT Arlington EE 5340 - Semiconductor Device Theory

This preview shows page 1-2-21-22 out of 22 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 22 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 22 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 22 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 22 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 22 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Slide 1Ideal 2-terminal MOS capacitor/diodeBand models (approx. scale)Flat band condition (approx. scale)Depletion for p-Si, Vgate> VFBDepletion for p-Si, Vgate> VFBEquivalent circuit for depletionInversion for p-Si Vgate>VTh>VFBInversion for p-Si Vgate>VTh>VFBApproximation concept “Onset of Strong Inv”MOS Bands at OSI p-substr = n-channelEquivalent circuit above OSIMOS surface states** p- substr = n-channeln-substr accumulation (p-channel)n-substrate depletion (p-channel)n-substrate inversion (p-channel)Values for gate work function, fmValues for fms with metal gateValues for fms with silicon gateTypical fms valuesFlat band with oxide charge (approx. scale)ReferencesEE 5340Semiconductor Device TheoryLecture 24 – Spring 2011Professor Ronald L. [email protected]://www.uta.edu/ronc©rlc L24-19Apr20112Ideal 2-terminalMOS capacitor/diodex-xox0SiO2silicon substrateVgateVsubconducting gate,area = LWtsub0yL©rlc L24-19Apr20113Band models (approx. scale)EoEcEvqcox ~ 0.95 eVmetal silicon dioxide p-type s/cqfm= 4.1 eV for AlEoEFmEFpEoEcEvEFiqfs,pqcSi= 4.05eVEg,ox~ 8 eV©rlc L24-19Apr20114Flat band condition (approx. scale)Ec,OxEvAlSiO2p-Siq(fm-cox)= 3.15 eVEFmEFpEcEvEFiq(cox-cSi)=3.1eVEg,ox~8eVcond band-flat forVVV8.0 VeV8.0EETheneV85.0EEIfsgMSfpfmFBfpfmfpcqffp= 3.95eV©rlc L24-19Apr20115Depletion for p-Si, Vgate> VFBSiO2p-type SiVgate> VFBVsub = 0EOx,x> 0x-xox0tsubx,OxSiOxSiSiSix,OxOxOxOxx,OxE31E39.37.11EE0xVEAcceptorsDepl Reg©rlc L24-19Apr20116Depletion forp-Si, Vgate> VFBFig 10.4b*©rlc L24-19Apr20117Equivalent circuitfor depletion•Depl depth given by the usual formula = xdepl = [2eSi(Vbb)/(qNa)]1/2•Depl cap, C’depl = eSi/xdepl•Oxide cap, C’Ox = eOx/xOx•Net C is the series combOxdepltot'C1'C1'C1C’OxC’depl©rlc L24-19Apr20118Inversion for p-SiVgate>VTh>VFBVgate> VFBVsub = 0EOx,x> 0inversion for threshold above E Induced depletes 0 E Induced 0xVESiSiOxOxx,Ox--AcceptorsDepl Reg e- e- e- e- e-©rlc L24-19Apr20119Inversion for p-SiVgate>VTh>VFBFig 10.5*©rlc L24-19Apr201110Approximation concept“Onset of Strong Inv”•OSI = Onset of Strong Inversion occurs when ns = Na = ppo and VG = VTh•Assume ns = 0 for VG < VTh•Assume xdepl = xd,max for VG = VTh and it doesn’t increase for VG > VTh •Cd,min = eSi/xd,max for VG > VTh •Assume ns > 0 for VG > VTh©rlc L24-19Apr201111MOS Bands at OSIp-substr = n-channelFig 10.9*©rlc L24-19Apr201112Equivalent circuitabove OSI•Depl depth given by the maximum depl = xd,max = [2eSi|2fp|/(qNa)]1/2•Depl cap, C’d,min = eSi/xd,max•Oxide cap, C’Ox = eOx/xOx•Net C is the series combOx,mindtot'C1'C1'C1C’OxC’d,min©rlc L24-19Apr201113MOS surface states**p- substr = n-channelVGSsSurf chg Carr DenVGS < VFB < 0s < 0 Accum. ps > NaVGS = VFB < 0s = Neutral ps = NaVFB < VGSs > 0 Depletion ps < NaVFB < VGS < VThs = |p| I ntrinsic ns = ps = niVGS < VThs > |p| Weak inv ni< ns < NaVGS = VThs = 2|p| O.S.I . ns = Na©rlc L24-19Apr201114n-substr accumulation (p-channel)Fig 10.7a*©rlc L24-19Apr201115n-substrate depletion(p-channel)Fig 10.7b*©rlc L24-19Apr201116n-substrate inversion(p-channel)Fig 10.7*©rlc L24-19Apr201117Values for gate workfunction, fmV 17.5q/E :Si-poly pV 05.4 :Si-poly nV 55.4 :W ,TungstenV 65.5 :Pt ,PlatinumV 6.4 :Mo ,MolybdenumV 1.5 :Au ,GoldV 28.4 :Al ,umminAlugSimSimmmmmm©rlc L24-19Apr201118Values for fmswith metal gate02586.0V ,12.1E ,19E8.2N10E45.1n ,05.4 ,28.4NNlnV :Si-n to AlnNlnVq2EnNNlnV :NotenNNlnV :Si-p to AltgCiSiAlm,dCtSiAlm,msiatg2iaCt2iaCtSiAlm,ms©rlc L24-19Apr201119Values for fmswith silicon gateidtgdCtdCtSigSimsiatg2iaCt2iaCtSiSimsnNlnVq2ENNlnV :NoteNNlnVqE :Si-n to poly pnNlnVq2EnNNlnV :NotenNNlnV :Si-p to poly n©rlc L24-19Apr201120Fig 10.15*fms(V)NB (cm-3)Typical fms values©rlc L24-19Apr201121Flat band with oxidecharge (approx. scale)EvAlSiO2p-SiEFmEc,OxEg,ox~8eVEFpEcEvEFi'Ox'ssmsOxmsFBOxOxcOx'ssxssmssCQVVxVdxdEq1QEsurface gate the onis Q'Q' chargea cond FB at thenbound, Ox/Si the atis Q' charge a Ifq(ffp-cox)q(Vox)q(fm-cox)q(VFB)VFB= VG-VB, when Si bands are flatEx+<--Vox-->-©rlc L24-19Apr201122References* Semiconductor Physics & Devices, by Donald A. Neamen, Irwin, Chicago, 1997.**Device Electronics for Integrated Circuits, 2nd ed., by Richard S. Muller and Theodore I. Kamins, John Wiley and Sons, New York,


View Full Document

UT Arlington EE 5340 - Semiconductor Device Theory

Download Semiconductor Device Theory
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Semiconductor Device Theory and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Semiconductor Device Theory 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?