DOC PREVIEW
Berkeley ELENG 130 - Lecture Notes

This preview shows page 1-2-3-4 out of 12 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

1EE130 Lecture 11, Slide 1Spring 2003Lecture #11OUTLINE• pn Junctions – reverse breakdown– ideal diode analysis» current flow (qualitative) » minority carrier distributionsReading: Chapter 6EE130 Lecture 11, Slide 2Spring 2003A Note of Caution• Typically, pn junctions in IC devices are formed by counter-doping. The equations derived in class (and in the textbook) can be readily applied to such diodes ifNA≡ net acceptor doping on p-side (NA-ND)p-sideND≡ net donor doping on n-side (ND-NA)n-side2EE130 Lecture 11, Slide 3Spring 2003pn Junction Electrostatics, VA≠ 0• Built-in potential Vbi (non-degenerate doping):• Depletion width W :=+=2lnlnlniDAiDiAbinNNqkTnNqkTnNqkTV+−=+=DAAbisnpNNVVqxxW11)(2εWNNNxDADp+=WNNNxDAAn+=EE130 Lecture 11, Slide 4Spring 2003• Electric field distribution ε(x)• Potential distribution V(x))()0( that NoteAbiDADVVNNNV −+=3EE130 Lecture 11, Slide 5Spring 2003Peak Electric Field• For a one-sided junction:thereforeAbiVVWdx −==∫)0(21 εε() ()sAbiAbiVVqNWVVεε−≅−=22)0()(2AbisVVqNW −≅εEE130 Lecture 11, Slide 6Spring 2003A Zener diode is designed to operate in the breakdown mode.VIVBRPNARForward CurrentSmall leakageCurrent(a)3.7VR(b)ICZener diodeJunction Breakdown4EE130 Lecture 11, Slide 7Spring 2003•If Vreverse= -VAis so large such that the peak electric field exceeds a critical value εcrit, then the junction will break down (large reverse current will flow)• Thus, the reverse bias at which breakdown occurs is bicritsBRVqNV −=22εε()sBRbicritVVqNεε+=2EE130 Lecture 11, Slide 8Spring 2003if VBR>> Vbiεcritincreases slightly with N:For 1014cm-3< N < 1018cm-3, 105V/cm <εcrit< 106V/cmqNVcritsBR22εε≈Avalanche Breakdown MechanismSmall E-field:High E-field:5EE130 Lecture 11, Slide 9Spring 2003Dominant breakdown mechanism when both sides of a junction are very heavily doped.EcEvVA= 0:EvEcEmpty StatesFilled States-Tunneling (Zener) Breakdown Mechanism VA< 0:bicritsBRVqNV −=22εεV/cm 106≈critεTypically, VBR< 5 V for Zener breakdownEE130 Lecture 11, Slide 10Spring 2003Empirical Observations of VBR• VBRdecreases with increasing N• VBRdecreases with decreasing EG6EE130 Lecture 11, Slide 11Spring 2003Breakdown Temperature Dependence• For the avalanche mechanism: VBRincreases with increasing T– Mean free path decreases• For the tunneling mechanism: VBRdecreases with increasing T– Flux of valence-band electrons available for tunneling increasesEE130 Lecture 11, Slide 12Spring 2003Current Flow in a pn Junction Diode• When a forward bias (VA>0) is applied, the potential barrier to diffusion across the junction is reduced– Minority carriers are “injected” into the quasi-neutral regions => ∆np> 0, ∆pn> 0 • Minority carriers diffuse in the quasi-neutral regions, recombining with majority carriers7EE130 Lecture 11, Slide 13Spring 2003• Current density J = Jn(x) + Jp(x)• J is constant throughout the diode, but Jn(x) and Jp(x) vary with positiondxndqDnqdxdnqDnqxJnnnnn)()(∆+=+=εε µµdxpdqDpqdxdpqDpqxJppppp)()(∆−=−=εε µµEE130 Lecture 11, Slide 14Spring 2003Ideal Diode Analysis: Assumptions• Non-degenerately doped step junction• Steady-state conditions• Low-level injection conditions prevail in the quasi-neutral regions• Recombination-generation is negligible in the depletion regioni.e. Jn& Jpare constant inside the depletion region0 ,0 ==⇒dxdJdxdJpn8EE130 Lecture 11, Slide 15Spring 2003Ideal Diode Analysis: Approach• Solve the minority-carrier diffusion equations in quasi-neutral regions to obtain ∆np(x,VA),∆pn(x,VA)– apply boundary conditions •p-side: ∆np(-xp), ∆np(-∞)•n-side: ∆pn(xn), ∆pn(∞)• Determine minority-carrier current densities in quasi-neutral regions• Evaluate Jnat x=-xp and Jpat x=xn J(VA) = Jn(VA)|x=-xp+ Jp(VA )|x=xndxndqDVxJpnAn)(),(∆=dxpdqDVxJnpAp)(),(∆−=EE130 Lecture 11, Slide 16Spring 2003Carrier Concentrations at –xp, xnn-sidep-sideConsider the equilibrium (VA= 0) carrier concentrations:A20A0)()(NnxnNxpipppp=−=−D20D0)()(NnxpNxninnnn==If low-level injection conditions prevail in the quasi-neutralregions when VA≠0, thenA)( Nxppp=−D)( Nxnnn=9EE130 Lecture 11, Slide 17Spring 2003“Law of the Junction”The voltage VAapplied to a pn junction falls mostly acrossthe depletion region (assuming that low-level injection conditions prevail in the quasi-neutral regions).We can draw 2 quasi-Fermi levels in the depletion region:kTEFenn/)(iiN−=kTFEenp/)(iPi−=kTqVenpn/2iA =kTFFkTEFkTFEPNiNPieneenpn/)(2i/)(/)(2i −−−==EE130 Lecture 11, Slide 18Spring 2003Excess Carrier Concentrations at –xp, xn()1)( )()(/A2/0A/2AAAA−=−∆==−=−kTqVippkTqVpkTqVippppeNnxnenNenxnNxpn-sidep-side()1)( )()(/D2/0D/2DAAA−=∆===kTqVinnkTqVnkTqVinnnneNnxpepNenxpNxn10EE130 Lecture 11, Slide 19Spring 2003Example: Carrier InjectionA pn junction has NA=1018 cm-3and ND=1016 cm-3. The applied voltage is 0.6 V.Question: What are the minority carrier concentrations at the depletion-region edges?Answer:Question: What are the excess minority carrier concentrations?Answer:-312026.06.0cm 10100)( =×==− eenxnkTVqpoppA-314026.06.04cm 1010)( =×== eepxpkTVqnonnA-31212cm 1010010)()( =−=−−=−∆poppppnxnxn-314414cm 101010)()( =−=−=∆nonnnnpxpxpEE130 Lecture 11, Slide 20Spring 2003Excess Carrier Distribution• From the minority carrier diffusion equation:• We have the following boundary conditions:• For simplicity, we will develop a new coordinate system:• Then, the solution is of the form:0)( →∞∆np)1()(/−=∆kTqVnonnAepxp222pnppnnLpDpdxpd ∆=∆=∆τppLxLxneAeAxp/'2/'1)'(−+=∆NEW: x’’ 0 0 x’11EE130 Lecture 11, Slide 21Spring 2003From the x = ∞ boundary condition, A1= 0.From the x = xnboundary condition, Therefore,Similarly, we can derive0' ,)1()'(/'/>−=∆−xeepxppALxkTqVnonppLxLxneAeAxp/'2/'1)'(−+=∆0'' ,)1()''(/''/>−=∆−xeenxnnALxkTqVpop)1(/2−=kTqVnoAepAEE130 Lecture 11, Slide 22Spring 2003pLxkTVqnppnppeepLDqdxxpdqDJ'0)1(')'(A−−=∆−=nLxkTVqpnnpnneenLDqdxxndqDJ''0)1('')''(A−−=∆−=pn Diode I-V Characteristicn-side:p-side:)1(ADA2i00−+=+=+==′=′′=−=kTVqppnnxpxnxxpxxneNLDNLDqnJJJJJJnp12EE130 Lecture 11, Slide 23Spring 2003)1(0−=kTVqAeII+=AnnDppiNLDNLDAqnI20EE130 Lecture 11, Slide 24Spring


View Full Document

Berkeley ELENG 130 - Lecture Notes

Documents in this Course
Test

Test

3 pages

Lecture

Lecture

13 pages

Lecture 4

Lecture 4

20 pages

MOSFETs

MOSFETs

25 pages

Exam

Exam

12 pages

Test 4

Test 4

3 pages

PLOT.1D

PLOT.1D

13 pages

Load more
Download Lecture Notes
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture Notes and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture Notes 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?