DOC PREVIEW
CMU 15441 Computer Networking - Lecture

This preview shows page 1-2-3 out of 8 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 8 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 8 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 8 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 8 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

1 15-441 Computer Networking Lecture 18 – TCP Performance 11-01-07 Lecture 19: TCP Congestion Control 2 Outline • TCP congestion avoidance • TCP slow start • TCP modeling 11-01-07 Lecture 19: TCP Congestion Control 3 Additive Increase/Decrease T0 T1 Efficiency Line Fairness Line User 1’s Allocation x1 User 2’s Allocation x2 • Both X1 and X2 increase/ decrease by the same amount over time • Additive increase improves fairness and additive decrease reduces fairness 11-01-07 Lecture 19: TCP Congestion Control 4 Muliplicative Increase/Decrease • Both X1 and X2 increase by the same factor over time • Extension from origin – constant fairness T0 T1 Efficiency Line Fairness Line User 1’s Allocation x1 User 2’s Allocation x22 11-01-07 Lecture 19: TCP Congestion Control 5 What is the Right Choice? • Constraints limit us to AIMD • Improves or keeps fairness constant at each step • AIMD moves towards optimal point x0 x1 x2 Efficiency Line Fairness Line User 1’s Allocation x1 User 2’s Allocation x2 11-01-07 Lecture 19: TCP Congestion Control 6 TCP Congestion Control • Changes to TCP motivated by ARPANET congestion collapse • Basic principles • AIMD • Packet conservation • Reaching steady state quickly • ACK clocking 11-01-07 Lecture 19: TCP Congestion Control 7 Implementation Issue • Operating system timers are very coarse – how to pace packets out smoothly? • Implemented using a congestion window that limits how much data can be in the network. • TCP also keeps track of how much data is in transit • Data can only be sent when the amount of outstanding data is less than the congestion window. • The amount of outstanding data is increased on a “send” and decreased on “ack” • (last sent – last acked) < congestion window • Window limited by both congestion and buffering • Sender’s maximum window = Min (advertised window, cwnd) 11-01-07 Lecture 19: TCP Congestion Control 8 ACK Clocking • Congestion window helps to “pace” the transmission of data packets • In steady state, a packet is sent when an ack is received • Data transmission remains smooth, once it is smooth • Self-clocking behavior Pr Pb Ar Ab Receiver Sender As3 11-01-07 Lecture 19: TCP Congestion Control 9 AIMD • Distributed, fair and efficient • Packet loss is seen as sign of congestion and results in a multiplicative rate decrease • Factor of 2 • TCP periodically probes for available bandwidth by increasing its rate Time Rate 11-01-07 Lecture 19: TCP Congestion Control 10 Congestion Avoidance • If loss occurs when cwnd = W • Network can handle 0.5W ~ W segments • Set cwnd to 0.5W (multiplicative decrease) • Upon receiving ACK • Increase cwnd by (1 packet)/cwnd • What is 1 packet?  1 MSS worth of bytes • After cwnd packets have passed by  approximately increase of 1 MSS • Implements AIMD 11-01-07 Lecture 19: TCP Congestion Control 11 Congestion Avoidance Sequence Plot Time Sequence No Packets Acks 11-01-07 Lecture 19: TCP Congestion Control 12 Congestion Avoidance Behavior Time Congestion Window Packet loss + retransmit Grabbing back Bandwidth Cut Congestion Window and Rate4 11-01-07 Lecture 19: TCP Congestion Control 13 Packet Conservation • At equilibrium, inject packet into network only when one is removed • Sliding window and not rate controlled • But still need to avoid sending burst of packets  would overflow links • Need to carefully pace out packets • Helps provide stability • Need to eliminate spurious retransmissions • Accurate RTO estimation • Better loss recovery techniques (e.g. fast retransmit) 11-01-07 Lecture 19: TCP Congestion Control 17 Outline • TCP congestion avoidance • TCP slow start • TCP modeling 11-01-07 Lecture 19: TCP Congestion Control 18 Congestion Avoidance Behavior Time Congestion Window Packet loss + retransmit Grabbing back Bandwidth Cut Congestion Window and Rate 11-01-07 Lecture 19: TCP Congestion Control 19 Reaching Steady State • Doing AIMD is fine in steady state but slow… • How does TCP know what is a good initial rate to start with? • Should work both for a CDPD (10s of Kbps or less) and for supercomputer links (10 Gbps and growing) • Quick initial phase to help get up to speed (slow start)5 11-01-07 Lecture 19: TCP Congestion Control 20 Slow Start Packet Pacing • How do we get this clocking behavior to start? • Initialize cwnd = 1 • Upon receipt of every ack, cwnd = cwnd + 1 • Implications • Window actually increases to W in RTT * log2(W) • Can overshoot window and cause packet loss 11-01-07 Lecture 19: TCP Congestion Control 21 Slow Start Example 1 One RTT One pkt time 0R 2 1R 3 4 2R 5 6 7 8 3R 9 10 11 12 13 14 15 1 2 3 4 5 6 7 11-01-07 Lecture 19: TCP Congestion Control 22 Slow Start Sequence Plot Time Sequence No . . . Packets Acks 11-01-07 Lecture 19: TCP Congestion Control 23 Return to Slow Start • If packet is lost we lose our self clocking as well • Need to implement slow-start and congestion avoidance together • When retransmission occurs set ssthresh to 0.5w • If cwnd < ssthresh, use slow start • Else use congestion avoidance6 11-01-07 Lecture 19: TCP Congestion Control 24 TCP Saw Tooth Behavior Time Congestion Window Initial Slowstart Fast Retransmit and Recovery Slowstart to pace packets Timeouts may still occur 11-01-07 Lecture 19: TCP Congestion Control 25 Outline • TCP congestion avoidance • TCP slow start • TCP modeling 11-01-07 Lecture 19: TCP Congestion Control 26 TCP Performance • Can TCP saturate a link? • Congestion control • Increase utilization until… link becomes congested • React by decreasing window by 50% • Window is proportional to rate * RTT • Doesn’t this mean that the network oscillates between 50 and 100% utilization? • Average utilization = 75%?? • No…this is *not* right! 11-01-07 Lecture 19: TCP Congestion Control 27 TCP Congestion Control Only W packets may be outstanding Rule for adjusting W• If an ACK is received: W ← W+1/W • If a packet is lost: W ← W/2 Source Dest t Window size7 11-01-07 Lecture 19: TCP Congestion Control 28 Single TCP Flow Router without buffers 11-01-07


View Full Document

CMU 15441 Computer Networking - Lecture

Documents in this Course
Lecture

Lecture

14 pages

Lecture

Lecture

19 pages

Lecture

Lecture

14 pages

Lecture

Lecture

78 pages

Lecture

Lecture

35 pages

Lecture

Lecture

4 pages

Lecture

Lecture

4 pages

Lecture

Lecture

29 pages

Lecture

Lecture

52 pages

Lecture

Lecture

40 pages

Lecture

Lecture

44 pages

Lecture

Lecture

41 pages

Lecture

Lecture

38 pages

Lecture

Lecture

40 pages

Lecture

Lecture

13 pages

Lecture

Lecture

47 pages

Lecture

Lecture

49 pages

Lecture

Lecture

7 pages

Lecture

Lecture

18 pages

Lecture

Lecture

15 pages

Lecture

Lecture

74 pages

Lecture

Lecture

35 pages

Lecture

Lecture

17 pages

lecture

lecture

13 pages

Lecture

Lecture

21 pages

Lecture

Lecture

14 pages

Lecture

Lecture

53 pages

Lecture

Lecture

52 pages

Lecture

Lecture

40 pages

Lecture

Lecture

11 pages

Lecture

Lecture

20 pages

Lecture

Lecture

39 pages

Lecture

Lecture

10 pages

Lecture

Lecture

40 pages

Lecture

Lecture

25 pages

lecture

lecture

11 pages

lecture

lecture

7 pages

Lecture

Lecture

10 pages

lecture

lecture

46 pages

lecture

lecture

7 pages

Lecture

Lecture

8 pages

lecture

lecture

55 pages

lecture

lecture

45 pages

lecture

lecture

47 pages

lecture

lecture

39 pages

lecture

lecture

33 pages

lecture

lecture

38 pages

lecture

lecture

9 pages

midterm

midterm

16 pages

Lecture

Lecture

39 pages

Lecture

Lecture

14 pages

Lecture

Lecture

46 pages

Lecture

Lecture

40 pages

Lecture

Lecture

11 pages

Lecture

Lecture

41 pages

Lecture

Lecture

38 pages

Lecture

Lecture

9 pages

Lab

Lab

3 pages

Lecture

Lecture

53 pages

Lecture

Lecture

51 pages

Lecture

Lecture

38 pages

Lecture

Lecture

42 pages

Lecture

Lecture

49 pages

Lecture

Lecture

63 pages

Lecture

Lecture

7 pages

Lecture

Lecture

51 pages

Lecture

Lecture

35 pages

Lecture

Lecture

29 pages

Lecture

Lecture

65 pages

Lecture

Lecture

47 pages

Lecture

Lecture

41 pages

Lecture

Lecture

41 pages

Lecture

Lecture

32 pages

Lecture

Lecture

35 pages

Lecture

Lecture

15 pages

Lecture

Lecture

52 pages

Lecture

Lecture

16 pages

Lecture

Lecture

4 pages

lecture

lecture

27 pages

lecture04

lecture04

46 pages

Lecture

Lecture

46 pages

Lecture

Lecture

13 pages

lecture

lecture

41 pages

lecture

lecture

38 pages

Lecture

Lecture

40 pages

Lecture

Lecture

25 pages

Lecture

Lecture

38 pages

lecture

lecture

11 pages

Lecture

Lecture

42 pages

Lecture

Lecture

12 pages

Lecture

Lecture

36 pages

Lecture

Lecture

46 pages

Lecture

Lecture

35 pages

Lecture

Lecture

34 pages

Lecture

Lecture

9 pages

lecture

lecture

49 pages

class03

class03

39 pages

Lecture

Lecture

8 pages

Lecture 8

Lecture 8

42 pages

Lecture

Lecture

20 pages

lecture

lecture

29 pages

Lecture

Lecture

9 pages

lecture

lecture

46 pages

Lecture

Lecture

12 pages

Lecture

Lecture

24 pages

Lecture

Lecture

41 pages

Lecture

Lecture

37 pages

lecture

lecture

59 pages

Lecture

Lecture

47 pages

Lecture

Lecture

34 pages

Lecture

Lecture

38 pages

Lecture

Lecture

28 pages

Exam

Exam

17 pages

Lecture

Lecture

21 pages

Lecture

Lecture

15 pages

Lecture

Lecture

9 pages

Project

Project

20 pages

Lecture

Lecture

40 pages

L13b_Exam

L13b_Exam

17 pages

Lecture

Lecture

48 pages

Lecture

Lecture

10 pages

Lecture

Lecture

52 pages

21-p2p

21-p2p

16 pages

lecture

lecture

77 pages

Lecture

Lecture

18 pages

Lecture

Lecture

62 pages

Lecture

Lecture

25 pages

Lecture

Lecture

24 pages

Project

Project

20 pages

Lecture

Lecture

47 pages

Lecture

Lecture

38 pages

Lecture

Lecture

35 pages

Roundup

Roundup

45 pages

Lecture

Lecture

47 pages

Lecture

Lecture

39 pages

Lecture

Lecture

13 pages

Midterm

Midterm

22 pages

Project

Project

26 pages

Lecture

Lecture

11 pages

Project

Project

27 pages

Lecture

Lecture

10 pages

Lecture

Lecture

50 pages

Lab

Lab

9 pages

Lecture

Lecture

30 pages

Lecture

Lecture

6 pages

r05-ruby

r05-ruby

27 pages

Lecture

Lecture

8 pages

Lecture

Lecture

28 pages

Lecture

Lecture

30 pages

Project

Project

13 pages

Lecture

Lecture

11 pages

Lecture

Lecture

12 pages

Lecture

Lecture

48 pages

Lecture

Lecture

55 pages

Lecture

Lecture

36 pages

Lecture

Lecture

17 pages

Load more
Download Lecture
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?