Unformatted text preview:

EE 232 Lightwave DevicesLecture 18: Photoconductors and pinLecture 18: Photoconductors and p-i-n PhotodiodesReading: Chuang, Chap. 14Instructor: Ming C. WuUniversity of California, BerkeleyElectrical Engineering and Computer Sciences DeptElectrical Engineering and Computer Sciences Dept.EE232 Lecture 18-1©2008. University of CaliforniaPhotoconductors()00 0 0Dark current:npJEnqpqEσμμ== +ωhLight illumination generate electron-hole pairs, increasing the conductivity:++--dx0increasing the conductivity:ndn nGdtδδτ=−Equivalent CircuitArea = wL×()0Steady state: d/dt --> 0nnGδτδ=ΔEquivalent Circuit()Photoconductor requires both contanpJnq EδμμΔ=⋅ +cts to be OhmicωhEE232 Lecture 18-2©2008. University of CaliforniaPhotoconductor requires both contacts to be OhmicPhotocarrier Generation RateLight Intensity xeα−∝(1 )PRωhxd(1 )optPR−(1 )deα−−++--dx11hi ioptPxdArea = wL×0311 : photocarrier generation rate [ ](1 )(1 )optdiGlwd cm sReαηωηη−==− −h: reflectivity of photoconductor surface: absorption coefficient: absorption lenghtRdαEE232 Lecture 18-3©2008. University of California: absorption lenght: fraction of light remains after abddeα−sorption length dPhotoconductive Gain()()()01nnptIlwJlwGq EPτμμΔ= Δ= +⎛⎞()()111optnnpoptPIlw q ElwdPqIqEPvητμμωητμη τ⎛⎞Δ= +⎜⎟⎝⎠Δ≈ =h() : transit timenn opt nntIqEPvdddvητμη τωωτΔ≈ ==hhnnopttvqIPτηωτ⎛⎞⎛⎞Δ=⎜⎟⎜⎟⎝⎠⎝⎠ht⎝⎠⎝⎠Photocurrent PhotoconductiveGainEE232 Lecture 18-4©2008. University of CaliforniaGainAnalogy to Current Gain in Bipolar TransistorCurrent gain in bipolar transistor:CIβECB=The current gain can also be expressed asCBIIβECB=:transittimerbtτβττ: transit time: carrier recombination lifetime in the basetrbττEE232 Lecture 18-5©2008. University of CaliforniaFrequency of Photoconductors1optnPdN Ndt lwdηωτ=−he (dB)01Small signal response: 1jtNN NePNω=+ Response/100ntττ=/1,000ntττ=/ 10,000ntττ=111111nPNjNlwdPNωηωτη=−=hconductive/1ntττ=/10ntττ=()()111 11/nnNlwd jIJlwNqvlwωωτ=+==⎛⎞⎛⎞hFrequency (Hz)Photoc()()1111DC Quantum Efficiency Photoconductive GainntnIqPjτηωτ ωτ⎛⎞⎛⎞=⎜⎟⎜⎟+⎝⎠⎝⎠=××hEE232 Lecture 18-6©2008. University of California()()DC Quantum Efficiency Photoconductive Gain Normalized Fre=××()quency ResponseP-i-n Photodiodehν• Reverse-biased p-i-n junction•Most of the voltage dropNihνPMost of the voltage drop across the i-region, the main absorption regionHigh field separates•High field separates photogenerated electron and hole0• Large bandgap materials are used for P and N if possible•Fast response21−Ec0iqEv0ihνFast response• Low noise•No gain (quantum efficiency3−2−qF0qEE232 Lecture 18-7©2008. University of CaliforniaNo gain (quantum efficiency < 100%)2− 107−× 1− 107−× 0 1107−× 2107−×4−xiI-V CurveI0Dark current: ( 1)BqVkTIIe=−Photocurrent: ph optqIPηω=hVQuantum efficiency: (1 )(1 )diReαωηη−=− −h0Total current: ( 1)BqVkTphIIe I=−+1phI2phIEE232 Lecture 18-8©2008. University of CaliforniaLoad Line for Biasing the PDAbsorption Coefficient• Light intensity decays exponentially in semiconductor:• Direct bandgap semiconductor has a sharp absorption edgexeIxIα−=0)(has a sharp absorption edge• Si absorbs photons with hv > Eg= 1.1 eV, but the gabsorption coefficient is small– Sufficient for CCD•At higher energy ( 3eV)•At higher energy (~ 3 eV), absorption coefficient of Si becomes large again, due to directbandgaptransition toEE232 Lecture 18-9©2008. University of Californiadirect bandgaptransition to higher CBTwo Types of p-i-n PhotodiodesLdSurface-Illuminated p-i-nWaveguide p-i-nSurface Illuminated pin(1 )(1 ): internal quantum efficiencydiiReαηηη−=− −Waveguide pin(1 )(1 ): internal quantum efficiencyLiiReαηηη−Γ=− −: reflectivity: absorption layer thicknessRd: reflectivity: confinement factor: length of waveguide PDRLΓEE232 Lecture 18-10©2008. University of California: length of waveguide PDLRamo’s TheoremProof:Work done on the charge:dAWork done on the charge: Force DisplacementWVqEdx q dx=×==The current caused in external circuit AWork provided by power supply:()qEdx q dxdWitVdt===by a moving charge moving at a volocity ( ) in a parallel plate with a separation of and a voltage biasqvtd()()WitVdtVitVdt q dx⇒=a separation of and a voltage bias of V is()()dqv tit=()()()itVdt q dxdqdx qvtitddt d==EE232 Lecture 18-11©2008. University of California()itd=Response of One PhotogeneratedElectron-Hole Pair() () ()ehit i t i t=+()eit/eqv dNP()hit/hqv dxd0Timeedxv−hxvTimeElectronTrajectoryehTotal charge generated:() ()hQitdtitdt∞∞=+∫∫TimeHoleTrajectory00() ()ehehQitdtitdtqv qvdx xqdv dv+−=+=∫∫EE232 Lecture 18-12©2008. University of CaliforniaOne absorbed photon one charge detectedehdv dv→Transit Time() () ()it i t i t() () ()ehit i t i t=+()eitNP()e()hitTimeedvMany electron-hole pairsgeneratedhdvElectron current ends when the last electron generated near P-side reaches N-electrode: ldhhlhldetdv=Hole current ends when the last hole generated near N-side reaches P-electrode: htdv=dEE232 Lecture 18-13©2008. University of CaliforniaHole is usually slower A conservative estimate of the transit time: thdvτ→=Total Response Time of p-i-n(1) RC time:( : area of p-i-n)ARC R Aετ==Absorption layer thicknessfor optimum frequency response: (: area of p-i-n)(2) Transit time:RCRC R Addτ===RC thRA ddvεττ τ+= +⎛⎞⎛⎞Total response time:thdvτ=211hRAddvvετ⎛⎞⎛⎞≥⎜⎟⎜⎟⎝⎠⎝⎠3=12RC tdBfτττπτ+≈33,max1124Optimum bandwidth occurs whenhdB dBvffRAπτ π ε≈≤ =2πτhRA ddvdRAε=EE232 Lecture 18-14©2008. University of Californiaoptimum hdRAvε=More Rigorous Analysis ofp-i-n Response Time20Small-signal analysis: assume the input RC020 log H1 fi()()2⎡⎣⎤⎦⋅light is modulated at frequency ,the photocurrent is proportional toω⎛⎞Transit1106× 1107× 1108× 1109× 11010× 11011×40−20−fi2022sin12()1ttitjRCωτωωτ⎛⎞⎜⎟⎝⎠∝+⎛⎞⎜⎟TransitTime20020 log H2 fi()()2⎡⎣⎤⎦⋅2The first term is single-pole response from RC, hilt⎜⎟⎝⎠th d t i th h d l d t1106× 1107× 1108× 1109× 11010× 11011×40−20−fi20while the second term is the phase delay due totransit time response.Total020 log H3 fi()()2⎡⎣⎤⎦⋅EE232 Lecture 18-15©2008.


View Full Document

Berkeley ELENG 232 - Lecture Notes

Download Lecture Notes
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture Notes and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture Notes 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?