DOC PREVIEW
CALTECH AY 21 - Dark energy

This preview shows page 1-2-3-4 out of 12 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Dark energy By Robert Caldwell From http://physicsweb.org/articles/world/17/5/7 Feature: May 2004 New evidence has confirmed that the expansion of the universe is accelerating under the influence of a gravitationally repulsive form of energy that makes up two-thirds of the cosmos. It is an irony of nature that the most abundant form of energy in the universe is also the most mysterious. Since the breakthrough discovery that the cosmic expansion is accelerating, a consistent picture has emerged indicating that two-thirds of the cosmos is made of "dark energy" - some sort of gravitationally repulsive material. But is the evidence strong enough to justify exotic new laws of nature? Or could there be a simpler, astrophysical explanation for the results? The dark-energy story begins in 1998, when two independent teams of astronomers were searching for distant supernovae, hoping to measure the rate at which the expansion of the universe was slowing down. They were in for a shock: the observations showed that the expansion was speeding up. In fact, the universe started to accelerate long ago, some time in the last 10 billion years. Like detectives, cosmologists around the world have built up a description of the culprit responsible for the acceleration: it accounts for two-thirds of the cosmic energy density; it is gravitationally repulsive; it does not appear to cluster in galaxies; it was last seen stretching space–time apart; and it goes by the assumed name of "dark energy". Many theorists already had a suspect in mind: the cosmological constant. It certainly fits the accelerating-expansion scenario. But is the case for dark energy airtight? The existence of gravitationally repulsive dark energy would have dramatic consequences for fundamental physics. The most conservative suggestions are that the universe is filled with a uniform sea of quantum zero-point energy, or a condensate of new particles that have a mass that is 10-39 times smaller than that of the electron. Some researchers have also suggested changes to Einstein's general theory of relativity, such as a new long-range force that moderates the strength of gravity. But there are shortcomings with even the leading conservative proposals. For instance, the zero-point energy density would have to be precisely tuned to a value that is an unbelievable factor of 10120 below the theoretical prediction. In view of these extreme solutions, perhaps it is more reasonable to expect a conventional explanation for the accelerating expansion of the universe based on astrophysics (e.g. the effects of dust, or differences between young and old supernovae). This possibility has surely kept more than a few cosmologists awake at night. Until recently the supernova data were the only direct evidence for the cosmic acceleration, and the only compelling reason to accept dark energy. Precision measurements of the cosmic microwave background (CMB), including data from the Wilkinson Microwave Anisotropy Probe (WMAP), have recently provided circumstantial evidence for dark energy. The same is true of data from two extensive projects charting the large-scale distribution of galaxies - the Two-Degree Field (2DF) and Sloan Digital Sky Survey (SDSS). Now a second witness has testified. By combining data from WMAP, SDSS and other sources, four independent groups of researchers have reported evidence for a phenomenon known as theintegrated Sachs-Wolfe effect. These groups have found that the gravitational repulsion of dark energy has slowed down the collapse of overdense regions of matter in the universe. The case for the existence of dark energy has suddenly become a lot more convincing. Charting the cosmic expansion The cosmic expansion, discovered in the late 1920s by Edwin Hubble, is perhaps the single most striking feature of our universe. Not only do astronomical bodies move under the gravitational influence of their neighbours, but the large-scale structure of the universe is being stretched ever larger by the cosmic expansion. A popular analogy is the motion of raisins baking in a very large cake. As the cake rises, the distance between any pair of raisins embedded in the cake grows. If we choose one particular raisin to represent our galaxy, we find that all the other raisins/galaxies are moving away from us in all directions. As a result, our universe has expanded from the hot, dense cosmic soup created in the Big Bang to the much cooler and more rarefied collection of galaxies and clusters of galaxies that we see today. The light emitted by stars and gas in distant galaxies has likewise been stretched to longer wavelengths during its journey to Earth. This shift in wavelength is given by the redshift, z = (λobs - λ0)/λ0, where λobs is the wavelength we see on Earth and λ0 is the wavelength of the emitted light. For instance, excited hydrogen atoms emit so-called Lyman alpha transition radiation with a characteristic wavelength of λ0 = 121.6 nm when they fall back to the ground state. This transition is seen in distant galaxies, and was used to identify the current record-holder for redshift: a staggering z = 10 galaxy with a Lyman alpha line at λobs = 1337.6 nm (see Physics World April p3). But the redshift describes only the change in the scale of the cosmos, and does not tell us the distance or the age of the universe when the light was actually emitted. If we knew both the distance and the redshift for many objects, we could begin to chart the cosmic expansion. One of the prime methods for measuring extragalactic distances is to use "standard candles" such as Cepheid variable stars. The luminosity of a Cepheid variable changes periodically with time, with the luminosity being proportional to the period. The distance to a Cepheid can be determined by first measuring its period in order to obtain the luminosity, and then comparing this with the observed intensity to calculate the distance. Thus, redshifts and distances to objects moving in the "Hubble flow" (the region beyond the gravitational influence of our local group of galaxies) have been charted, revealing the Hubble law: d = (cz/H0), where c is the speed of light and H0 = 72 ± 8 km s-1 per megaparsec


View Full Document

CALTECH AY 21 - Dark energy

Documents in this Course
Load more
Download Dark energy
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Dark energy and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Dark energy 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?