Unformatted text preview:

1Hydrogen atomSWE Æ 2 equations Eq 1 Solution = 3D rotor-hbar22 meB1sin q ∑∑q Jsin q ∑∑qN +1sin2 q ikjj∑2∑f2y{zzFQF = bQFb=hbar22 me l Hl + 1L(,) () ()lllmmllmYθφθφ=Θ ΦEngel 7.33Hydrogen atomSWE Æ 2 equations Eq 2βfrom 3D rotorV(r) from Coulombhbar22 meB1r2 ddr Jr2 ddrN + HE - VHrLLFR =bR:-hbar22 meB1r2 ddr Jr2 ddrNF+ Bhbar22 me r2 lHl + 1L -e24 pe0 rF> R = ER2R(r) eqn gives atom energy Boundary condition R(r) Æ 0 as rgets large Enquantizedn≥l + 1n= 1, 2, 3, … Doesn’t include Etranslationof CMEn=-me e48 e02 h2 n2=-2.18 μ 10-18Jn2=-13.60 eVn2Properties of En En= -13.60 (1)-3.40 (2)-1.51 (3)-0.85 (4) E∞= 0En=-me e48 e02 h2 n2=-2.18 μ 10-18Jn2=-13.60 eVn2H atom has “bound” statesE < 0“free” (unmoving) electronE = 03H atom spectroscopy Rydberg formula for line spectra IP(H) = 13.6 eV = ΔE1,∞ Isotope effect (tiny) on line positionsnm,n= R J1n2-1m2NOrbitals, ψ(r,θ,φ) R(r)Y(θ, φ) R Æn& l Y Æl& mln12 3l00, 1 0, 1, 2ml00, {0, ±1} 0, {0,±1},{0,±1,±2}gn14 94Orbitals, ψ(r,θ,φ)d±1(Y2±2)R323dx2-y2± i3dxy±223d±1(Y2±1)R323dxz± i3dyz±123dz2(Y20)R323dz2023p±1(Y1±1)R313px± i3py±113pz(Y10)R313pz013s (Y00)R303s003p±1(Y1±1)pz(Y10)s (Y00)s (Y00)YlmR212px± i2py±112R212pz012R202s002R101s001RnlψnlmmllnVeffective Centripetal + Coulomb:-hbar22 meB1r2 ddr Jr2 ddrNF+ Bhbar22 me r2 lHl + 1L -e24 pe0 rF> R = ER1×10-102×10-103×10-104×10-105×10-106×10-10-2×10-18-1×10-181×10-182×10-18l= 0, n= 1, 2, 3, …l= 2, n= 3, 4, 5, …l= 1, n= 2, 3, 4, …R(0) = 0R(0) ≠ 05R10(radial factor for 1s) a0= 0.529 Å (= 1 bohr) = ε0h2/ π mee2R10 = 2 ikjj1a0y{zz3ê2 −rêa0rR101×10-102×10-103×10-104×10-101×10152×10153×10154×10155×10156×1015R20(radial factor for 2s)rR201×10-102×10-103×10-104×10-101×10152×10153×10154×10155×10156×1015R20 =1è!!!!8 ikjj1a0y{zz3ê2 J2 −ra0N −rêH2 a0Lradial node @ r = 2 a062×10-104×10-106×10-108×10-101×10-91.2 ×10-95×10141×10151.5 ×10152×1015R30(radial factor for 3s)rR302 radial nodesR30 =281 è!!!!3 ikjj1a0y{zz3ê2 ikjjjj27 − 18ra0+ 2r2a02y{zzzz −rêH3 a0LGraph scales have beenexpanded ~3xÆdiffusefunctionRn0vs. n2×10-104×10-106×10-108×10-101×10-95×10141×10151.5 ×10152×1015R10R20R30These functions must be orthogonal.To accomplish this, they:1) have different # nodes2) avoid each other7ψ2= R2Y2 (Y00)2= 1/4π Which is R102? vertical scales vary2×10-104×10-106×10-108×10-101×10-95×10301×10311.5 ×10312×10312.5 ×10313×10312×10-104×10-106×10-108×10-101×10-91×10302×10303×10304×10302×10-104×10-106×10-108×10-101×10-92×10294×10296×10298×10291×1030Radial distribution function r2R2 Probability at r for any θ& φ Sphere radius r has surface area 4πr22×10-104×10-106×10-108×10-101×10-91×1092×1093×1094×1098Probability of finding electron within rof nucleus2×10-104×10-106×10-108×10-101×10-90.20.40.60.81P10 =‡0xr2 R102 


View Full Document

REED CHEMISTRY 333 - Hydrogen atom

Download Hydrogen atom
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Hydrogen atom and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Hydrogen atom 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?