DOC PREVIEW
CMU 15441 Computer Networking - Lecture

This preview shows page 1-2 out of 7 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 7 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 7 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 7 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

1 15-441 Computer Networking Lecture 15 – Transport Protocols Copyright ©, 2007-10 Carnegie Mellon University 7 Outline • Transport introduction • Error recovery & flow control 8 Transport Protocols • Lowest level end-to-end protocol. • Header generated by sender is interpreted only by the destination • Routers view transport header as part of the payload 7 6 5 7 6 5 Transport IP Datalink Physical Transport IP Datalink Physical IP router 2 2 1 1 9 Functionality Split • Network provides best-effort delivery • End-systems implement many functions • Reliability • In-order delivery • Demultiplexing • Message boundaries • Connection abstraction • Congestion control • …2 10 Transport Protocols • UDP provides just integrity and demux • TCP adds… • Connection-oriented • Reliable • Ordered • Point-to-point • Byte-stream • Full duplex • Flow and congestion controlled 11 UDP: User Datagram Protocol [RFC 768] • “No frills,” “bare bones” Internet transport protocol • “Best effort” service, UDP segments may be: • Lost • Delivered out of order to app • Connectionless: • No handshaking between UDP sender, receiver • Each UDP segment handled independently of others Why is there a UDP? • No connection establishment (which can add delay) • Simple: no connection state at sender, receiver • Small header • No congestion control: UDP can blast away as fast as desired 12 UDP, cont. • Often used for streaming multimedia apps • Loss tolerant • Rate sensitive • Other UDP uses (why?): • DNS, SNMP • Reliable transfer over UDP • Must be at application layer • Application-specific error recovery Source port # Dest port # 32 bits Application data (message) UDP segment format Length Checksum Length, in bytes of UDP segment, including header 13 UDP Checksum Sender: • Treat segment contents as sequence of 16-bit integers • Checksum: addition (1’s complement sum) of segment contents • Sender puts checksum value into UDP checksum field Receiver: • Compute checksum of received segment • Check if computed checksum equals checksum field value: • NO - error detected • YES - no error detected But maybe errors nonethless? Goal: detect “errors” (e.g., flipped bits) in transmitted segment – optional use!3 14 High-Level TCP Characteristics • Protocol implemented entirely at the ends • Fate sharing • Protocol has evolved over time and will continue to do so • Nearly impossible to change the header • Use options to add information to the header • Change processing at endpoints • Backward compatibility is what makes it TCP 15 TCP Header Source port Destination port Sequence number Acknowledgement Advertised window HdrLen Flags 0 Checksum Urgent pointer Options (variable) Data Flags: SYN FIN RESET PUSH URG ACK 16 Evolution of TCP 1975 1980 1985 1990 1982 TCP & IP RFC 793 & 791 1974 TCP described by Vint Cerf and Bob Kahn In IEEE Trans Comm 1983 BSD Unix 4.2 supports TCP/IP 1984 Nagel’s algorithm to reduce overhead of small packets; predicts congestion collapse 1987 Karn’s algorithm to better estimate round-trip time 1986 Congestion collapse observed 1988 Van Jacobson’s algorithms congestion avoidance and congestion control (most implemented in 4.3BSD Tahoe) 1990 4.3BSD Reno fast retransmit delayed ACK’s 1975 Three-way handshake Raymond Tomlinson In SIGCOMM 75 17 TCP Through the 1990s 1993 1994 1996 1994 ECN (Floyd) Explicit Congestion Notification 1993 TCP Vegas (Brakmo et al) delay-based congestion avoidance 1994 T/TCP (Braden) Transaction TCP 1996 SACK TCP (Floyd et al) Selective Acknowledgement 1996 Hoe NewReno startup and loss recovery 1996 FACK TCP (Mathis et al) extension to SACK4 18 Outline • Transport introduction • Error recovery & flow control 19 Stop and Wait Time Packet ACK Timeout • ARQ • Receiver sends acknowledgement (ACK) when it receives packet • Sender waits for ACK and timeouts if it does not arrive within some time period • Simplest ARQ protocol • Send a packet, stop and wait until ACK arrives Sender Receiver 20 Recovering from Error Packet ACK Timeout Packet ACK Timeout Packet Timeout Packet ACK Timeout Time Packet ACK Timeout Packet ACK Timeout ACK lost Packet lost Early timeout DUPLICATE PACKETS!!! 21 • How to recognize a duplicate • Performance • Can only send one packet per round trip Problems with Stop and Wait5 22 How to Recognize Resends? • Use sequence numbers • both packets and acks • Sequence # in packet is finite  How big should it be? • For stop and wait? • One bit – won’t send seq #1 until received ACK for seq #0 Pkt 0 ACK 0 Pkt 0 ACK 1 Pkt 1 ACK 0 23 How to Keep the Pipe Full? • Send multiple packets without waiting for first to be acked • Number of pkts in flight = window • Reliable, unordered delivery • Several parallel stop & waits • Send new packet after each ack • Sender keeps list of unack’ed packets; resends after timeout • Receiver same as stop & wait • How large a window is needed? • Suppose 10Mbps link, 4ms delay, 500byte pkts • 1? 10? 20? • Round trip delay * bandwidth = capacity of pipe 24 Sliding Window • Reliable, ordered delivery • Receiver has to hold onto a packet until all prior packets have arrived • Why might this be difficult for just parallel stop & wait? • Sender must prevent buffer overflow at receiver • Circular buffer at sender and receiver • Packets in transit ≤ buffer size • Advance when sender and receiver agree packets at beginning have been received 25 Receiver Sender Sender/Receiver State … … Sent & Acked Sent Not Acked OK to Send Not Usable … … Max acceptable Receiver window Max ACK received Next seqnum Received & Acked Acceptable Packet Not Usable Sender window Next expected6 26 Sequence Numbers • How large do sequence numbers need to be? • Must be able to detect wrap-around • Depends on sender/receiver window size • E.g. • Max seq = 7, send win=recv win=7 • If pkts 0..6 are sent succesfully and all acks lost • Receiver expects 7,0..5, sender retransmits old 0..6!!! • Max sequence must be ≥ send window +


View Full Document

CMU 15441 Computer Networking - Lecture

Documents in this Course
Lecture

Lecture

14 pages

Lecture

Lecture

19 pages

Lecture

Lecture

14 pages

Lecture

Lecture

78 pages

Lecture

Lecture

35 pages

Lecture

Lecture

4 pages

Lecture

Lecture

4 pages

Lecture

Lecture

29 pages

Lecture

Lecture

52 pages

Lecture

Lecture

40 pages

Lecture

Lecture

44 pages

Lecture

Lecture

41 pages

Lecture

Lecture

38 pages

Lecture

Lecture

40 pages

Lecture

Lecture

13 pages

Lecture

Lecture

47 pages

Lecture

Lecture

49 pages

Lecture

Lecture

7 pages

Lecture

Lecture

18 pages

Lecture

Lecture

15 pages

Lecture

Lecture

74 pages

Lecture

Lecture

35 pages

Lecture

Lecture

17 pages

lecture

lecture

13 pages

Lecture

Lecture

21 pages

Lecture

Lecture

14 pages

Lecture

Lecture

53 pages

Lecture

Lecture

52 pages

Lecture

Lecture

40 pages

Lecture

Lecture

11 pages

Lecture

Lecture

20 pages

Lecture

Lecture

39 pages

Lecture

Lecture

10 pages

Lecture

Lecture

40 pages

Lecture

Lecture

25 pages

lecture

lecture

11 pages

lecture

lecture

7 pages

Lecture

Lecture

10 pages

lecture

lecture

46 pages

lecture

lecture

7 pages

Lecture

Lecture

8 pages

lecture

lecture

55 pages

lecture

lecture

45 pages

lecture

lecture

47 pages

lecture

lecture

39 pages

lecture

lecture

33 pages

lecture

lecture

38 pages

lecture

lecture

9 pages

midterm

midterm

16 pages

Lecture

Lecture

39 pages

Lecture

Lecture

14 pages

Lecture

Lecture

46 pages

Lecture

Lecture

8 pages

Lecture

Lecture

40 pages

Lecture

Lecture

11 pages

Lecture

Lecture

41 pages

Lecture

Lecture

38 pages

Lecture

Lecture

9 pages

Lab

Lab

3 pages

Lecture

Lecture

53 pages

Lecture

Lecture

51 pages

Lecture

Lecture

38 pages

Lecture

Lecture

42 pages

Lecture

Lecture

49 pages

Lecture

Lecture

63 pages

Lecture

Lecture

51 pages

Lecture

Lecture

35 pages

Lecture

Lecture

29 pages

Lecture

Lecture

65 pages

Lecture

Lecture

47 pages

Lecture

Lecture

41 pages

Lecture

Lecture

41 pages

Lecture

Lecture

32 pages

Lecture

Lecture

35 pages

Lecture

Lecture

15 pages

Lecture

Lecture

52 pages

Lecture

Lecture

16 pages

Lecture

Lecture

4 pages

lecture

lecture

27 pages

lecture04

lecture04

46 pages

Lecture

Lecture

46 pages

Lecture

Lecture

13 pages

lecture

lecture

41 pages

lecture

lecture

38 pages

Lecture

Lecture

40 pages

Lecture

Lecture

25 pages

Lecture

Lecture

38 pages

lecture

lecture

11 pages

Lecture

Lecture

42 pages

Lecture

Lecture

12 pages

Lecture

Lecture

36 pages

Lecture

Lecture

46 pages

Lecture

Lecture

35 pages

Lecture

Lecture

34 pages

Lecture

Lecture

9 pages

lecture

lecture

49 pages

class03

class03

39 pages

Lecture

Lecture

8 pages

Lecture 8

Lecture 8

42 pages

Lecture

Lecture

20 pages

lecture

lecture

29 pages

Lecture

Lecture

9 pages

lecture

lecture

46 pages

Lecture

Lecture

12 pages

Lecture

Lecture

24 pages

Lecture

Lecture

41 pages

Lecture

Lecture

37 pages

lecture

lecture

59 pages

Lecture

Lecture

47 pages

Lecture

Lecture

34 pages

Lecture

Lecture

38 pages

Lecture

Lecture

28 pages

Exam

Exam

17 pages

Lecture

Lecture

21 pages

Lecture

Lecture

15 pages

Lecture

Lecture

9 pages

Project

Project

20 pages

Lecture

Lecture

40 pages

L13b_Exam

L13b_Exam

17 pages

Lecture

Lecture

48 pages

Lecture

Lecture

10 pages

Lecture

Lecture

52 pages

21-p2p

21-p2p

16 pages

lecture

lecture

77 pages

Lecture

Lecture

18 pages

Lecture

Lecture

62 pages

Lecture

Lecture

25 pages

Lecture

Lecture

24 pages

Project

Project

20 pages

Lecture

Lecture

47 pages

Lecture

Lecture

38 pages

Lecture

Lecture

35 pages

Roundup

Roundup

45 pages

Lecture

Lecture

47 pages

Lecture

Lecture

39 pages

Lecture

Lecture

13 pages

Midterm

Midterm

22 pages

Project

Project

26 pages

Lecture

Lecture

11 pages

Project

Project

27 pages

Lecture

Lecture

10 pages

Lecture

Lecture

50 pages

Lab

Lab

9 pages

Lecture

Lecture

30 pages

Lecture

Lecture

6 pages

r05-ruby

r05-ruby

27 pages

Lecture

Lecture

8 pages

Lecture

Lecture

28 pages

Lecture

Lecture

30 pages

Project

Project

13 pages

Lecture

Lecture

11 pages

Lecture

Lecture

12 pages

Lecture

Lecture

48 pages

Lecture

Lecture

55 pages

Lecture

Lecture

36 pages

Lecture

Lecture

17 pages

Load more
Download Lecture
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?