Unformatted text preview:

Signal Encoding TechniquesSlide 2Coding TerminologyCoding DesignClock Recovery CircuitDigital Signal Encoding FormatsMulti-level Binary EncodingBi-phaseScramblingSignal SpectrumDigital Data Analog SignalsFrequency Shift Keying (FSK)Phase-Shift Keying (PSK)Multi-level PSKQAMAnalog Data, Digital SignalsNonlinear EncodingCompandingDelta ModulationAnalog Data, Analog SignalsSummaryReading AssignmentHomeworkSolution to Chapter 5 HomeworkChapter 3 Homework: Grading5-1©2005 Raj JainCSE473sWashington University in St. LouisSignal Encoding Signal Encoding TechniquesTechniquesRaj Jain Washington UniversitySaint Louis, MO [email protected] slides are available on-line at:http://www.cse.wustl.edu/~jain/cse473-05/5-2©2005 Raj JainCSE473sWashington University in St. Louis1. Coding Terminology and Design issues2. Digital Data, Digital Signal: AMI, Manchester, etc.3. Digital Data, Analog Signals: ASK, FSK, PSK, QAM4. Analog Data, Digital Signals: PCM, Companding5. Analog Data, Analog Signals: AM, FMOverview5-3©2005 Raj JainCSE473sWashington University in St. LouisCoding TerminologyCoding TerminologySignal element: Pulse (of constant amplitude, frequency, phase)Unipolar: All positive or All negative voltageBipolar: Positive and negative voltageMark/Space: 1 or 0Modulation Rate: 1/Duration of the smallest element =Baud rateData Rate: Bits per secondData Rate = Fn(Bandwidth, signal/noise ratio, encoding)PulseBit+5V0-5V+5V0-5V5-4©2005 Raj JainCSE473sWashington University in St. LouisCoding DesignCoding Design1. Pulse width indeterminate: Clocking2. DC, Baseline wander3. No line state information4. No error detection/protection5. No control signals6. High data rate7. Polarity mix-up  Differential (compare polarity)0 1 0 0 0 1 1 1 0 0 0 0 0ManchesterNRZIClockNRZBits+5V0-5V5-5©2005 Raj JainCSE473sWashington University in St. LouisClock Recovery CircuitClock Recovery CircuitSquarerReceivedSignalClocktd/dtPre FilterPhase LockLoopttt5-6©2005 Raj JainCSE473sWashington University in St. LouisDigital Signal Encoding FormatsDigital Signal Encoding FormatsReturn-to-Zero (RZ)0 = Remain at zero, 1 = +ve for ½ bit durationNonreturn-to-Zero-Level (NRZ-L)0 = high level, 1 = low levelNonreturn to Zero Inverted (NRZI)0 = no transition at beginning of interval (bit time)1 = transition at beginning of interval RZ5-7©2005 Raj JainCSE473sWashington University in St. LouisMulti-level Binary EncodingMulti-level Binary EncodingBipolar-AMI:0 = no line signal1= +ve or -ve for successive 1’sPseudo-ternary:0 = +ve or -ve for successive 0’s1= no line signalNo advantage over AMI1. No loss of sync with 1’s2. zeros are a problem3. No net dc component4. Error detectionNoise  violation5. Two bits/Hz6. 3 dB higher S/N7. 2b/Hz. Not 3.16 b/Hz5-8©2005 Raj JainCSE473sWashington University in St. LouisBi-phaseBi-phaseManchester: Used in Ethernet0 = High to low transition in middle 1 = Low to high transition in middle Differential Manchester: Used in Token RingAlways a transition in middle 0 = transition at beginning 1= no transition at beginning 1. No DC2. Clock sync3. Error detection4. 1 bit/Hz, 5. baud rate = 2  bit rate5-9©2005 Raj JainCSE473sWashington University in St. LouisScramblingScramblingBipolar with 8-Zero Substitution (B8ZS): Same as AMI, except eight 0’s replaced w two code violations0000 0000 = 000V 10V1High Density Bi-polar w 3 Zeros (HDB3): Same as AMI, except that four 0’s replaced with one code violation0000 = 000V if odd number of ones since last substitution 100V otherwise5-10©2005 Raj JainCSE473sWashington University in St. LouisSignal SpectrumSignal Spectrum5-11©2005 Raj JainCSE473sWashington University in St. LouisDigital Data Analog SignalsDigital Data Analog SignalsA Sin(2ft+)ASKFSKPSKUsed in 300-1200 bps modemsUsed in Optical Nets5-12©2005 Raj JainCSE473sWashington University in St. LouisFrequency Shift Keying (FSK)Frequency Shift Keying (FSK)Less susceptible to errors than ASKUsed in 300-1200 bps on voice grade lines1170±100 2125±1005-13©2005 Raj JainCSE473sWashington University in St. LouisPhase-Shift Keying (PSK)Phase-Shift Keying (PSK)Differential PSK: 0 = Same phase, 1=Opposite phaseA cos(2ft), A cos(2ft+) Quadrature PSK (QPSK): Two bits11=A cos(2ft+45°), 10=A cos(2ft+135°), 00=A cos(2ft+225°), 01=A cos(2ft+315°)Sum of two signals 90° apart in phase (In-phase I , Quadrature Q), Up to 180° phase difference between successive intervalsOrthogonal QPSK (OQPSK): Q stream delayed by 1 bitPhase difference between successive bits limited to 90° 111000 01015-14©2005 Raj JainCSE473sWashington University in St. LouisMulti-level PSKMulti-level PSK9600 bps Modems use PSK with 4 bits4 bits  16 combinations4 bits/element  1200 baud12 Phases, 4 with two amplitudes5-15©2005 Raj JainCSE473sWashington University in St. LouisQAMQAMQuadrature Amplitude and Phase ModulationQAM-4, QAM-16, QAM-64, QAM-256Used in DSL and wireless networksBinary QAM-401100001 11QAM-16IQIQIQ5-16©2005 Raj JainCSE473sWashington University in St. LouisAnalog Data, Digital SignalsAnalog Data, Digital SignalsSampling Theorem: 2  Highest Signal Frequency4 kHz voice = 8 kHz sampling rate8 k samples/sec  8 bits/sample = 64 kbpsQuantizing Error with n bits: S/N = 6.02n +1.76 dB5-17©2005 Raj JainCSE473sWashington University in St. LouisNonlinear EncodingNonlinear EncodingLinear: Same absolute error for all signal levelsNon-linear: More steps for low signal levels5-18©2005 Raj JainCSE473sWashington University in St. LouisCompandingCompandingReduce the intensity range by amplifying weak signals more than the strong signals inputOpposite is done at output5-19©2005 Raj JainCSE473sWashington University in St. LouisDelta ModulationDelta Modulation1 = Signal up one step, 0 = Signal down one stepLarger steps  More quantizing noise, Less slope overhead noiseHigher sampling rate = Lower noise, More bits11111111000000000010101010111015-20©2005 Raj JainCSE473sWashington University in St. LouisAnalog Data, Analog SignalsAnalog Data, Analog SignalsAmplitude Modulation (AM)Frequency Modulation (FM)Phase Modulation (PM)Both FM and PM are special cases of angle modulation5-21©2005 Raj JainCSE473sWashington University in St. LouisSummarySummaryCoding: Higher data rate, error control, clock synchronization, line state indication, control


View Full Document
Download Signal Encoding Techniques
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Signal Encoding Techniques and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Signal Encoding Techniques 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?