Unformatted text preview:

EE 232 Lightwave DevicesLecture 2: Basic Semiconductor Physics dOti lPand Optical ProcessesInstructor: Ming C. WuUniversity of California, BerkeleyElectrical Engineering and Computer Sciences DeptElectrical Engineering and Computer Sciences Dept.EE232 Lecture 2-1©2008. University of CaliforniaOptical Properties of SemiconductorsIntraband Transition(Free-Carrier Absorption)ECAbsorption Emission(FreeCarrier Absorption)EVInterbandTransitionEAImpurity-to-BandTransition• Optical transitionsTransitionTransition– Absorption: exciting an electron to a higher energy level by absorbing a photon–Emission: electron relaxing to a lower energy state by EE232 Lecture 2-2©2008. University of Californiaggyyemitting a photonBand-to-Band Transition• Since most electrons and holes are near the band-edges, the photon energy of band-to-band (or interband) transition is approximately equal to the bandgap energy:• The optical wavelength of band-to-band transition ghv E=can be approximated by1.24λ≈ : wavelength in mgEλλμ≈EE232 Lecture 2-3©2008. University of California: energy bandgap in eVgEEnergy Band Diagram in Real Space and k-SpaceE1Effective Mass ApproximationEECB*212eC eEEmv=+22*2eCkEEm=+ECk2em*eekmv=Momentum:VBxkEV*212hV hEE mv=−22*2hVkEE=−xReal Space K-Space2hmEE232 Lecture 2-4©2008. University of CaliforniaBand-to-Band TransitionCBhνCBhνCBhνhνVBhνVBhνVBhνhνAbsorptionSpontaneous StimulatedAbsorptionpEmission EmissionPhotodetectors;Solar CellsLEDOptical Amplifiers;Semiconductor LasersEE232 Lecture 2-5©2008. University of CaliforniaConservation of Energy and Momentum• Conditions for optical absorption and emission:CBEE–Conservation of energyCBhνE2νhEE =−12– Conservation of momentumVBhνE121hkkkν−=VB1kk1k221212,~2hkkakνππ12()()2~~0.5 ~1hkanm mνπλλμ<<Optical transitions are “vertical” linesEE232 Lecture 2-6©2008. University of California21kk⇒=LatticeConstantDirect vs Indirect BandgapsCBCBPhhνhνXPhononVBVB• Direct bandgap materials– CB minimum and VB maximum occur at the • Indirect bandgap materials– CB minimum and VB maximum occur at same k– Examples• GaAs, InP, InGaAsPdifferent k– Example• Si, GeEE232 Lecture 2-7©2008. University of California• (AlxGa1-x)As, x < 0.45 • (AlxGa1-x)As, x > 0.45– Not “optically active”Absorption Coefficient• Light intensity decays exponentially in semiconductor:• Direct bandgap semiconductor has a sharp absorption edgexeIxIα−=0)(has a sharp absorption edge• Si absorbs photons with hv > Eg= 1.1 eV, but the gabsorption coefficient is small– Sufficient for CCD•At higher energy ( 3eV)•At higher energy (~ 3 eV), absorption coefficient of Si becomes large again, due to directbandgaptransition toEE232 Lecture 2-8©2008. University of Californiadirect bandgaptransition to higher CBReview of Semiconductor PhysicsElectron and hole concentrations:() ()nfEEdEρ∞=∫() ()() ()CVneEEphnfEEdEpfEEdEρρ==∫∫Fermi-Dirac distributions:1()nfE−∞=⎛⎞()1exp1()nnBfEFkTfE⎛⎞−+⎜⎟⎝⎠=()1exp: electron quasi-Fermi levelppBnfEFEkTF=−⎛⎞+⎜⎟⎝⎠EE232 Lecture 2-9©2008. University of Californiaq : hole quasi-Fermi lnpF evelElectron/Hole Density of States (1)• Electron wave with wavevector kik re⋅• Periodic boundary conditionszLLe() () ()xyzik r L x ik r L y ik r L zik ree e e⋅+ ⋅+ ⋅+⋅===   • An electron state is defined byxLyLee e e===()222kkk lπππ⎛⎞↑↓ ↑↓⎜⎟kkΔzk• Number of electron states between k and ()222,, , ,xyzxyzkkkmnlLLLπππ↑↓=↑↓⎜⎟⎜⎟⎝⎠kkk+Δzk + Δk in k-space per unit volume22224()222kkdk kdk k dkVπρπππ⋅==ykEE232 Lecture 2-10©2008. University of California2()222kxyzVLLLρππππxkSpin Up and DownElectron/Hole Density of States (2)• Number of electron states between E and E + ΔE per unit volume22 2**2CeekkE E dE dkmm=+ ⇒=()**22222()eCeemEEmkdk dE E dEρππ−==3/2*2221()2eeCmEEEρπ⎛⎞=−⎜⎟⎝⎠• Likewise, hole density of states3/2*21()hmEEE⎝⎠⎛⎞⎜⎟EE232 Lecture 2-11©2008. University of California22()2hhVEEEρπ=−⎜⎟⎝⎠Electron and Hole Concentrations2*22211() ()21expCCene CEEnmnfEEdE EEdEEFρπ∞∞⎛⎞== −⎜⎟⎛⎞−⎝⎠+⎜⎟∫∫1/21expCCBnCCkTFEnNFkT+⎜⎟⎝⎠⎛⎞−=⋅⎜⎟⎝⎠1/23/2*2222CBeBCkTmkTNππ⎜⎟⎝⎠⎛⎞=⎜⎟⎝⎠()Fermi-Dirac Integral1jx∞∫2VpEFNFπ⎝⎠−⎛⎞⎜⎟()01 (1)1Gamma FunctionjxxFdxjeηη−=Γ+ +∫1/23/2*p=2VpVBhBNFkTmkTNπ⋅⎜⎟⎝⎠⎛⎞=⎜⎟3()22πΓ=EE232 Lecture 2-12©2008. University of California2222VNπ=⎜⎟⎝⎠Approximation of Electron/Hole Concentration()1/23e when 11 4(1)1when 1jjxxFdxjeηηηηηη∞−⎧⎪=⎨⎛⎞Γ+ +⎪⎜⎟∫∼0(1)1when 13When (Boltzmann approximation)jeFEηπΓ+ +⎪⎜⎟⎝⎠⎩When (Boltzmann approximation)CnBnCEFkTCFEnNe−−≈⋅3/2When (Degenerate)4nCnCFEFE⎛⎞−⎜⎟CnNBoltzmann ApproxDegenerate43nCBCkTnNπ⎜⎟⎝⎠≈⋅Quasi-FermiLevel Cross Band EdgeEE232 Lecture 2-13©2008. University of


View Full Document

Berkeley ELENG 232 - Lecture Notes

Download Lecture Notes
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture Notes and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture Notes 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?