DOC PREVIEW
MIT 8 962 - Study Guide

This preview shows page 1 out of 3 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 3 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 3 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Massachusetts Institute of Technology Department of Physics 8.962 Spring 2006 Problem Set 7 Post date: Thursday, April 6th Due date: Thursday, April 13th 1. Gravitomagnetism In lecture and working in Lorentz gauge, we examined the linearized Einstein field equations for a static source, �h¯µν = −16πGTµν → �2h¯µν = −16πGTµν , where �2 is the ordinary Euclidean 3-space Laplacian operator. For a static, non-relativistic source, the only non-zero stress-energy component is (to sufficient accuracy for our purposes) T00 = ρ . Using this, we found ¯h00 = −4Φ → hµν = −2Φ diag(1, 1, 1, 1) , where Φ = −GM/r is the Newtonian gravitational potential. We will now modify this slightly by imagining that the source rotates, and thus is characterized by a spin angular momentum with spatial components Si as well as a mass M. (a) Consider the source to be spherically symmetric, with uniform density ρ and radius R. Take it to be rotating rigidly about the x3 ≡ z axis with constant angular velocity Ω. Working in a Lorentz frame that is at rest with respect to the center of mass of the source, work out all components of the stress energy tensor Tµν to first order in Ω. (Assume ρ, R, and Ω are constant.) Indicate which components would change if you included terms to second order in Ω, but don’t calculate those second order corrections. (You may neglect pressure terms throughout your calculation.) ¯(b) Solve for the Cartesian off-d iagonal components h0x, h0y, h0z. (Note that h0i = h0i since trace reversal has no effect on off-diagonal components.) This is a moderately challenging calculation. The following tips should help: • Recall that the formal solution to the Poisson-type equation for h0i is h0i(x) = 4G� T0i(x �)d3 x � |x − x�| where x is the “field point”, the location of the point at which h0i is to be evalu-ated, and x � is the “source point”, a coordinate within the source over which the .integral is taken. [Boldface quantities denote 3-vectors: x = (x, y, z).]• The following expansion for the factor 1/|x − x �| is very useful: 1 1 xjxj� = + + . . . |x − x�| r r3 You may assume this identity in your solution. Note also that a sum over j is implied here; we are allowed to be sloppy about the placement of indices since the spatial metric is δij to leading order. [This identity is more often seen as an expansion in spherical harmonics; see, for example, J. D. Jackson, Sec. 3.6 (2nd edition). This form in terms of Cartesian coordinates is equivalent.] • After you have set up your integral, convert the primed integration variable to spherical coordinates to do the integration: x 1� = x � → r � sin θ� cos φ� x 2� = y � → r � sin θ� sin φ� x 3� = z � → r � cos θ� Your final metric components should be proportional to ρR5/r3 . (c) Using the identity Si = IΩi where I is moment of inertia and Ωi is the ith com-ponent of the angular velocity vector, rewrite your answer in terms of the angular momentum Si . Although we derived this result for a special situation (uniform density, spherical body, rigid rotation), the result we obtain in terms of Si is completely general; see, for example, MTW Sec. 19.1. (d) Converting to spherical coordinates, find h0r, h0θ, h0φ. Hint: Only one of these components is non-zero. After changing coordinates, you should find that this non-zero component is ∝ Sz sin2 θ/r. 2. Comparison of linearized GR and Maxwell’s theory Consider the line element ds2 = −(1 + 2Φ)dt2 + (1 − 2Φ)(dx2 + dy2 + dz2) − 2βi dxi dt ; in other words, the usual weak field line element on the diagonal with h0i = −βi . (a) Show that the geodesic equation for a particle moving in this spacetime gives the following equation of motion to first order in the particle’s velocity v: d2 x m = mg + m(v × H) . dt2 Here, x is a 3-vector representing the position of the particle, and g = −�Φ , H = � × β , where � represents the ordinary gradient operator in Euclidean 3-space.(b) Show that for stationary sources (i.e., no component of the stress energy tensor shows time variation) the Einstein field equations may be written � · g = −4πGρ , � × H = −16πGJ � · H = 0 , � × g = 0 . The current J = ρv, where v is the velocity of fluid flow in the source. (Note that the second two equations follow from the definitions of g and H, so the only labor is in working out the first two.) (c) These equations clearly bear a strong resemblance to Maxwell’s equations in the limit ∂tE = ∂tB = 0; the main differences are the reversed sign in both equations, and the extra factor of 4 (compared to Maxwell) in the curl equation. Can you give a simple explanation for these differences? 3. Carroll: Chapter 7, Problem 1. 4. Carroll: Chapter 7, Problem 3. 5. Carroll: Chapter 7, Problem


View Full Document

MIT 8 962 - Study Guide

Download Study Guide
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Study Guide and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Study Guide 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?