Johns Hopkins AS 110 202 - Practice Final CALCULUS III

Unformatted text preview:

110.202. Calculus III2004 Sum m erPractice Final8/3/20041. Com p u te the following limits if they exist:(a) lim(x,y)→(0,0)exyx+1.(b) lim(x,y)→(0,0)cos x−1−x22x4+y4.[Solution](a) Sin ce lim(x,y)→(0,0)exy=1and lim(x,y)→(0,0)x +1 = 1 6=0in aneigh bourhood of (0, 0), we use quotient property of limitsto getlim(x,y)→(0,0)exyx +1=11=1.(b) If w e approaches (0, 0) along y =0, we ha ve, by l’hospitalrule,lim(x,0)→(0,0)cos x − 1 −x22x4=limx→0−sin x − x4x3=limx→0−cos x − 112x.This last limit tends to −∞ as x → 0. Thus, the lim(x,y)→(0,0)cos x−1−x22x4+y4does not exist.¥2. Find the absolute m axim um and minim um for the functionf (x, y, z)=x + y + zon the b allB =©(x, y, z) | x2+ y2+ z2≤ 1ª.[Solution]Write B = U ∪ ∂B where U = {(x, y, z) | x2+ y2+ z2< 1}and ∂B = {(x, y, z) | x2+ y2+ z2=1}.Since ∇f =(1, 1, 1) 6=(0, 0, 0),wehavenocriticalpointsonU.12To find the critical points on ∂B,letf (x, y, z)=x + y + zand g (x, y, z)=x2+ y2+ z2− 1. By the method of Lagrangemultip lie r , we have∇f = λ∇g,that is,(1, 1, 1) = λ (2x, 2y, 2z) .So, w e have the followin g system of equ a tion s:⎧⎪⎪⎨⎪⎪⎩1=2λx1=2λy1=2λzx2+ y2+ z2=1.By 2λx =1,weknowλ 6=0.Wehavex =12λ= y = z.Bythe last equation, we ha ve34λ2=1.Thisimpliesthatλ = ±√32.Moreover, we have two critical points (x, y, z)=³1√3,1√3,1√3´or (x, y, z)=³−1√3, −1√3, −1√3´.Since we hav e only two candidates of absolute maximumand minim um, one m ust be the absolute maxim um and an-other must be the absolute m inimum. It is easy to see thatf³1√3,1√3,1√3´=3√3=√3 is the absolute m aximum and f³−1√3, −1√3, −1√3´=−3√3= −√3 is the absolute minim um .¥3. EvaluateZZZD¡x2+ y2+ z2¢dxdydzo ver the sphere D = {(x, y, z) | x2+ y2+ z2≤ 1}.[Solution]Using spherical coordinate s, let x = ρ sin φ cos θ, y = ρ sin φ sin θand z = ρ cos φ where 0 ≤ ρ ≤ 1, 0 ≤ φ ≤ π and 0 ≤ θ ≤ 2π.3So, x2+ y2+ z2= ρ2and the Jacobian is ρ2sin φ.Therefore,ZZZD¡x2+ y2+ z2¢dxdydz=Z10Zπ0Z2π0ρ2ρ2sin φdθdφdρ=Z10Zπ0Z2π0¡ρ4· sin φ¢dθdφdρ=µZ10ρ4dρ¶·µZπ0sin φdφ¶·µZ2π0dθ¶=Ãρ55¯¯¯¯1ρ=0!·³−cos φ|πφ=0´·¡θ|2πθ=0¢=15· (−(−1) − (−1)) · 2π=4π5.¥4. Determin e whether the in tegra lZZD1√xydxdyexists where D =[0, 1] × [0, 1]. If it exists, compute its value.[Solution]4This integra l is imp roper w h enever xy =0.LetDδ,=[δ, 1]×[ε, 1].WehaveDδ,ε→ D as δ → 0 and ε → 0 and1√xyis well-defined and integrable in Dδ,ε. Therefore,ZZD1√xydxdy=limδ,→0Z1δZ11√xydydx=limδ→0Z1δlim→0"µ2√xyx¶¯¯¯¯1y=#dx=limδ→0Z1δlim→0∙2√xx− 2√xx¸dx=limδ→0Z1δ2√xdx=limδ→0h¡4√x¢¯¯1x=δi=limδ→0h4 − 4√δi=4.Since limδ→0δ ln δ = limδ→0ln δ1δ=limδ→01δ−1δ2=limδ→0−δ =0,wehaveRRDx+yx2+2xy+y2dxdy =2ln2.¥5. EvaluateZ10Z1yex2dxdy.[Solution]5By drawing the graph of the region, w e change the order ofintegration intoZ10Z1yex2dxdy =Z10Zx0ex2dydx=Z10xex2dx=ex22¯¯¯¯¯1x=0=e2−12=e − 12.¥6. EvaluateZZSz2dSwhere S is the portion of the cylind er x2+ y2=4between theplanes z =0and z = x +3.[Solution]Use cylindrical coordinates for the cylinder. Let x =2cosθ,y =2sinθ and z = z where 0 ≤ z ≤ x +3=2cosθ +3 and0 ≤ θ ≤ 2π. So, the parametrization Φ of S isΦ (θ, z)=(2cosθ, 2sinθ, z)where 0 ≤ θ ≤ 2π and 0 ≤ z ≤ 2cosθ +3.We calculateTθ× Tz=(−2sinθi +2cosθj) × (zk)=2cosθi +2sinθj.So, we havekTθ× Tzk =2.6Therefore,ZZSz2dS =Z2π0Z2cosθ+30z2(2) dzdθ=Z2π023(2 cos θ +3)3dθ=23Z2π0¡8cos3θ +36cos2θ +54cosθ +27¢dθ=60π.¥7. Auniformfluid that flows vert ically downw ard (like, heavy rain)is described by the vector fieldF (x, y, z)=(0, 0, −1) .Find the total flux through the cone z =px2+ y2,x2+y2≤ 1.[Solution]Parametrize the cone by letting x = r cos θ, y = r sin θ andz =px2+ y2=q(r cos θ)2+(r sin θ)2= r where 0 ≤ r ≤ 1and 0 ≤ θ ≤ 2π. So, the parametrization Φ of S isΦ (r, θ)=(r cos θ, r sin θ, r)where 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π.We calculate (since our fliud flows downward, we calculateTθ× Trinstead of Tr× Tθ.)Tθ× Tr=(−r sin θi + r cos θj) × (cos θi +sinθj + k)= r cos θi + r sin θj − rk.The flux is the surface in tegral of F over S,thatis,RRSF·dS.Therefore, w e ha veZZSF·dS =ZZΦF· (Tθ× Tr) dθdrZ2π0Z10(0, 0, −1) · (r cos θ, r sin θ, −r) drdθ=Z2π0Z10rdrdθ= π.¥78. EvaluateZCx2ydx + ydywhere C is the bournary of the region between the curv e y = xand y = x3where 0 ≤ x ≤ 1.[Solution]By Green’s theorem,ZCx2ydx + ydy =ZZD∙∂ (y)∂x−∂ (x2y)∂y¸dxdywhere C is the boundry of D with counterclock w ise orientation.We can d escr ibe D as 0 ≤ x ≤ 1 and x3≤ y ≤ x. H ence,ZZD∙∂ (y)∂x−∂ (x2y)∂y¸dxdy=Z10Zxx3−x2dydx=Z10h¡−x2y¢¯¯xy=x3idx=Z10¡−x3+ x5¢dx= −112.¥9. LetF =2yzi +(−x +3y +2)j +¡x2+ z¢k.EvaluateZZS(∇ × F) · dSwhere S is the cylinder x2+ y2= a2, 0 ≤ z ≤ 1 (without thetop and bottom ).[Solution]We have∇ × F =¯¯¯¯¯¯ij k∂∂x∂∂y∂∂z2yz −x +3y +2 x2+ z¯¯¯¯¯¯= −(2x − 2y) j +(−1 − 2z) k.We can parametrize S as x = a cos θ, y = a sin θ and z = zwhere 0 ≤ θ ≤ 2π and 0 ≤ z ≤ 1. Th u s, the parametr ization Φ8of S isΦ (θ, z)=(a cos θ, a sin θ, z) .where 0 ≤ θ ≤ 2π and 0 ≤ z ≤ 1.We calculateTθ× Tz=(−a sin θi + a cos θj) × (zk)= a cos θi + a sin θj.Therefore,ZZS(∇ × F) · dS=ZZS(∇ × F) · (Tθ× Tz) dθdz=Z2π0Z10(0, −2(a cos θ)+2a sin θ, −1 − 2z) · (a cos θ, a sin θ, 0) dzdθ=Z2π0Z10¡−2a2sin θ cos θ +2a2sin2θ¢dθ=2a2Z2π0¡sin2θ − sin θ cos θ¢dθ=2a2π.By Stokes’ theorem,ZZS(∇ × F) · dS =Z∂SF · dswhere ∂S is the boundary of the surface S. Therefore, we ha vet wo parts of ∂S.Oneisx2+ y2= a2and z =0.Anotheris x2+ y2= a2and z =1.Weparametrizex2+ y2= a2byletting x = a cos θ and y = a sin θ where 0 ≤ θ ≤ 2π. Hence,dx = −a sin θdθ and dy = a cos θdθ. Mor eov er, in both cases,dz =0.9Th us, for the first o ne, we ha veZ∂SF · ds=Z∂S(2yz) dx +(−x +3y +2)dy +¡x2+ z¢dz=Z2π0(−a cos θ +3a sin θ +2)(a cos θdθ)=Z2π0¡−a2cos2θ +3a2sin θ cos θ +2a cos θ¢dθ= −a2π.For th e second one, we hav eZ∂SF · ds=Z∂S(2yz) dx +(−x +3y +2)dy +¡x2+ z¢dz=Z2π0(2 · a sin θ · 1) (−a sin θdθ)+(−a cos θ +3a sin θ +2)(a


View Full Document

Johns Hopkins AS 110 202 - Practice Final CALCULUS III

Download Practice Final CALCULUS III
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Practice Final CALCULUS III and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Practice Final CALCULUS III 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?