DOC PREVIEW
Purdue STAT 51100 - Lecture Notes

This preview shows page 1-2-3 out of 9 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 9 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 9 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 9 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 9 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Section 5.5: The Distribution of a LinearCombination1Formulae:• A linear combination of X1, ···, XnisY = a1X1+ a2X2+ ··· + anXn+ b.AssumeE(Xi) = µi; V (Xi) = σ2i• Then, we haveE(Y ) = a1µ1+ a2µ2+ ··· + anµn+ b.• In addition, if X1, ···, Xnare (mutually) inde-pendent, then we haveV (Y ) = a21σ21+ a22σ22+ ··· + a2nσ2n.• In the general case, assumeCorr(Xi, Yi) = ρij; i 6= j.Then, we haveV (Y ) =nXi=1a2iσ2i+X Xi6=jaiajCov(Xi, Xj)=nXi=1a2iσ2i+X Xi6=jaiajσiσjρij.2Special case: Assume X1, ···, Xnare independentand normal. Then, we haveY ∼ N(nXi=1aiµi+ b,nXi=1a2iσ2i).3First example of Section 5.5: example 5.28 and5.30 on textbook. SupposeX1∼ N(1000, 1002)X2∼ N(500, 802)andX3∼ N(300, 502).Assume X1, X2, X3are independent.Let Y = 3.0X1+ 3.2X2+ 3.4X3. ThenE(Y ) =3.0 × 1000 + 3.2 × 500+ 3.4 × 300 = 5620andV (Y ) =3.02× 1002+ 3.22× 802+ 3.42× 502= 184436Thus,Y ∼ N(5620, 184436).P (Y > 4500) = 1 − Φ(4500 − 5620√184436) = 0.9955.4Second example of Section 5.5: example 5.29.Assume X1and X2are independent,X1∼ N(22, 1.22)andX2∼ N(26, 1.52).Then, we haveE(X1− X2) = 22 − 26 = −4andV (X1− X2) =V (X1) + V (X2)=1.22+ 1.52=3.69.Thus,(X1− X2) ∼ N(−4, 3.69).5Third example of Section 5.5. Assume X1, X2,X3, X4, X5, and X6are all N(2, 4) and assumeindependence. LetY =X1+ X22−X3+ X4+ X5+ X64.Compute P (−2 ≤ Y ≤ 3).Answer:E(Y ) =12[E(X1) + E(X2)]−14[E(X3) + E(X4) + E(X5) + E(X6)]=0andV (Y )=(12)2[V (X1) + V (X2)]+ (−14)2[V (X3) + V (X4) + V (X5) + V (X6)]=3.Then, Y ∼ N(0, 3) andP (−2 ≤ Y ≤ 3) =Φ(3 − 0√3) − Φ(−2 − 0√3)=Φ(1.73) − Φ(−1.15)=0.8331.6Fourth example of Section 5.5. X1, X2, X3areindependent. AssumeX1∼ N(1.2, 1.4)X2∼ N(1.3, 1.7)X3∼ N(1.15, 2.0).• ComputeP (−4 ≤ 1.2X1+ 1.1X2− 1.3X3≤ 3)Answer: Let Y = 1.2X1+ 1.1X2− 1.3X3.Then,E(Y ) =1.2 × 1.2 + 1.1 × 1.3 − 1.3 × 1.15=1.375;V (Y )=1.22× 1.4 + 1.12× 1.7 + (−1.3)2× 2.0=7.453.Thus, Y ∼ N(1.375, 7.453) andP (−4 ≤ Y ≤ 3)=Φ(3 − 1.375√7.453) − Φ(−4 − 1.375√7.453)=Φ(0.60) − Φ(−1.97)=0.7013.7• ComputeP (|1.5X1+ 1.4X2− 2.0X3| ≤ 3).Answer: LetY = 1.5X1+ 1.4X2− 2.0X3.Then,E(Y ) =1.5 × 1.2 + 1.4 × 1.3 − 2.0 × 1.15=1.32V (Y )=1.52× 1.4 + 1.42× 1.7 + (−2.0)2× 2.0=13.53,andY ∼ N(1.32, 13.53).Thus,P (|Y | ≤ 3)=P (−3 ≤ Y ≤ 3)=Φ(3 − 1.32√13.53) − Φ(−3 − 1.32√13.53)=Φ(0.46) − Φ(−1.17)=0.5562.8• ComputeP (X1+ X2≥ 2X3).Answer: Note thatP (X1+ X2≥ 2X3) = P (X1+ X2− 2X3≥ 0).LetY = X1+ X2− 2X3.ThenE(Y ) = 0.2andV (Y ) = 11.1.Then,Y ∼ N(0.2, 11.1)Thus,P (Y ≥ 0) =1 − Φ(0 − 0.2√11.1)=1 −


View Full Document

Purdue STAT 51100 - Lecture Notes

Download Lecture Notes
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture Notes and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture Notes 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?