Unformatted text preview:

Part 1.pdfPart 2.pdfPart 3.pdfPart 4.pdfPart 5.pdfProcess Control Pri nciplesFundamental control conceptsRegulate value of a quantity compared to areference value. Reference called setpointProcess - a collection of equipment andmaterials that takes inputs and has outputsExampleQort depends onV6-lf Qout = Qin, h constantQout t Qin, tank emPtiesQort ( Qin, tank overflowsIHLNo reference value givenet438a-1.pptBasic Control ElementsMeasurementControl decisionSystem modificationIHLcontrollerfinalcontroloout elementtank level, H, is reference (setpoint)h is the control variable.Human is the controller, adjustsQort to maintain h as close as possible to HExample of regulator actionneosurerrentsight gLosset438a-1.pptAutomatic Control SystemsAutomationAutorroticContro[sensorcontnol.elementOor.rtUse sensors and analog or digital electronics tomonitor system.Elements of Automatic Control SystemProcess - single or multiple variableMeasurement - sensors / transducersError detection - compare H to hController - generate corrective actionFinal control element - modify processIHLet438a-1.pptBlock DiagramsReduce complex systems to inputs and outputsSignals form a loop Control loopr = reference setpoint valuec = control variable in the processm = measurement of control variablep = controller outputu = control element changee = r - m (due to signs on summer)Block Diagramof Control SystemControlelementprocesscontrollermeasurementet438a-1.pptPractical System3-15 psipneumaticFinal control elementcurrent topressureconverterSignalConditioningControllerDiff. PressuretransducerSetpointValvemeasurementFlowControllerDiff. pres.Controf System PerformanceSystem signal change over time soe(t)=r-c(t)Where e(t) = error as a function of timer = setpoint valuec(t) = control variable as a function of timeControl System Objectivese(t) = 0 after changes or disturbancesstabfe c(t) after changes or disturbancesStabilitySteady-state regulation - e(t) = 0 or withintolerancesTransient regulation how does systemperform underchange6 et438a-1.pptTypes of system responseuncontrolleprocessprocesscontrolactivatedDamped Responseinstabilityr2c(t)r1Change Setpointr2c(t)r1Transient ResponsesovER s d ool'Setpoint changer1c(t)5e{11,'^ 1 Trtt'eDisturbanceet438a-1.pptAnalog Measurement ErrorError determines accuracyMethods of determing accuracyMeasured Value: Reading +- value1 00 psi +- 2 psiPercent of Full Scale (FS): (FS Value) (%t100)Meter accurate to +-5o/o of FS)10 V scaleerror = 10 V (+-Sotol1 00) -+-0.5VPercentage of Span (Span = max-min)(Span)(%t100)P measurement +-3o/o of span20-50 psierror = (50-20)(+-3%1100) = *-0.9 psiPercentage of Readingreading of 2V +-2o/oerror - 2V (*-Z%1100) = -F- 0.04 V9 et438a-1.pptcSystem AccuracyCummufative ErrorSensorsensor amplifierK - sensor gain G - amplifier gainV - sensor output voltage,AG, av, AK uncertainities in measurementWhat is magnitude of AV?,/ inPutWith no error:With error V+-AV - (K*-AKXG+-AG)cV+-lVMultiple out and=r AV +AG , AK_-- +VGK=* AGv - (KXG)c\\outputsimplify to getWhere + AV = norm a6zedV fractional uncertainity+AKK+-lKG+-AG10 et438a-1.pptG,K= normalized fractional uncertainityCombining the errorsUse RMS (RSS)Notes:AG AK are fractional error.I=rns/ov\\vlRDivide % to getultiply byultiplication&R '''j o/, T ierc.nc€,rth 2% a..c.rosYTM,'F;r(.T?. 3 % ,4rusEFGKAV is fractional RMS error Mrv 100 to get percent.Works on all formulas that are only mtand division.Example: inverting OP AMP T = t[A R+ - A R,i ..*JX s:ro,o.s 1: q,,n*, '-Ra -R; - /sq ui" '(cc'd w I41t.; =i&- =*o, o z14'" too Bui =t\m6t 1r" J ^r,o: * /Co os;e+(r"'s)11 et438a-1.ppt -16. o Z3 oR +'/rc\' /m\\a) . \^/Se nsor Ch a racte ri sticsSensitivity - Change in output for changein input. Equals slope in linear deviceHysteresis - output different for increasing ordecreasing inputResolution - Smallest measurement a sensorcan make.Linearity - how close to a line is the llOrelationshipcm=m(c)+coWhere c = measured control variablem = slopeGo = offset (y intercept)G,n = sensor output12 et438a-1.pptExampleFinding m and co from data pointsY Y1=m\x xl) lrt=Y2-Y1x2 x1Sensor has a linear resistance change of 100 to 195ohms, as temperature changes from 20 - 120 C.Find the sensor l/O relationshipbe{'^e 't{,..t= ,xr rl,) = (zo t,, loosr) X= 1r-,prJ(x, y.,. (tzo"r,l9ssz) t= o''-fP'-.iS l"pe. ,,.\.- l?Sra - /oo ;i _ gS sr_frl: lZoo(- 2,:oc = m= o.gs-n/r.3 - too.o- = o.9s f".(x - Z""c)J= o.9sx o9s(2") + lao iY=O.?sX+ 8t -./"t yPl"-l *u cleq/- po,,.t-s " l .* /d b, e one_I '''' e' '13 et438a-1.pptSensor ResponseFirst Order Response - idealc(t)cfStep change inPractical sensorc(t) b(t; =measured variableresponsesensor response functioncfsrr PTNCAtAsfSTf Pb Ec. ATAT,Ebr = final valuebi = initial valueno time delayet438a-1.pptModef ing 1st Order ResponeFor step increase:b(t)=bi. (0,z* (a -z)( ,- u*/" o"")Ztz(r-e*/"'o"o)9oo/o o{ 4.oV = r,d Vz(r - s %'*zs;Wherebr = final sensor valuebi = initial sensor valuet = timet = time constant of sensorFor step decreaseExample: Step increasebr-4.0V b, -2.0V r=0.0025/sFind time it takes for sensor to reach g0o/o of final valueo ,) (,,-Tb(t)=(0, o+)." rt\- r)-e Ib{t1 =b(t)=b (-r) or3.6= z +3+3 = t - e */o.aozs-O.8-( = -e-tl".ooZs_t/6.oo zf+o.Z:t€ il"Go,z)= l^(dt/"'^{-/.eo9: -t/o.oozr1.6o7(,:.ao2s) = 6o.Qo4 S = t4"4S: { /nrs,,,.>-F- il15et438a-1.pptExample: Step decreaseThe sensor initial output is 1.0 V how long does ittake to change to 0 .2 V if the time constant of thesensor is 0. 1/s. -t lrbi = l.oV [4"o.oV ?"st/s b(+)=(['-b{) -- t/"' 'btt) " o.Z O. Z' I eIn(o.r1 1 Llot+/- l.c o14 = - '/o' I/.(o94G,i) -. t,-.#r ! +"*Significant Digits in measurement anddesignIn meaurement: readable output of instrumentsresolution of sensors andtransducers.Calulation using meaurements: Trunicate calculatoranswers to match significant digits of measurementsand readings,16 et438a-1.pptSignificant digit examplescompute power based on the following measuredvalues. Use correct number of significant digits.| = 3.25 A V - 117.8 V p = V(t)3.25A 3 significantdigits117.8 V 4 significantdigitscalculator 382.85 WTrunciate to 3 significant digits p - 383 WSignificant digits not factor in design calculationsDevice values assumed to have no uncertainity.Compute the current flow through a resistor that hasa measured R of 1.234 ko and a voltage drop of1.344 Vdc.ft = 1.234 kA 4 significant digitsV - 1.344V 4 significant digitsl= (1.344)l(1 .234x 103) = 1.089 mA 4 digits17 et438a-1.pptBasic Statistics*=(l{WhereVaridnce (nrr)di/-J


View Full Document

SIU ET 438A - Process Control Principles

Download Process Control Principles
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Process Control Principles and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Process Control Principles 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?