Unformatted text preview:

Tukey's Studentized Range (HSD) Test for logcountBonferroni (Dunn) t Tests for logcountScheffe's Test for logcountTukey's Studentized Range (HSD) Test for logcountBonferroni (Dunn) t Tests for logcountIES 612/STA 4-573/STA 4-576Spring 2005Week 6 – IES612-week06-lecture.docANOVA MODELS – models for comparing means of different treatments or populationsRecall your old friend the two-group pooled variance t-testH0: 1 = 2 [two populations do NOT differ in mean response]Ha: 1 ≠ 2 Assumptions/Data?Data from population 1: (y11, y12, . . . , y1n1)Data from population 2: (y21, y22, . . . , y2n2)Assume Yij ~ independent N(i, 2)i = 1,2j = 1, 2, …, niAnother way of writing this is Yij = i + ij with ij ~ independent N(, 2)In other words, the response of the “jth” observation in the “ith” population can be written in termsof the mean of the ith population + how this observation differs from the mean. Does this look familiar?Test Statistic?2122111nnsyytpobs where  22)1()1(2121 12212222112 nnyynnsnsnsinjiijpiThe pooled variance looks like something from regression. What?How about your new friend, regression?Can we test H0: 1 = 2 [two populations differ in mean response]? Vs. Ha: 1 ≠ 2 Assumptions/Data?Data from population 1: (y11, y12, . . . , y1n1)Data from population 2: (y21, y22, . . . , y2n2)Assume Yij ~ independent N(i, 2) i = 1,2, j = 1, 2, …, niAnother way of writing this is Yij = i + ij with ij ~ independent N(, 2)Let X = 1 (if group 2) and X=0 (if group 1) and Y = 0 + 1 X + ThenGroup 1: Y = 0 + Group 2: Y = 0 + 1 + Implying 1 = 0 and 2 = 0 + 1 so 1 = 2 - 1. Thus, H0: 1 = 2 AND H0: 1 = 0 test the same hypothesis.Example: Comparing Two-group T-test, Regression test and one-way ANOVA testoptions ls=80 formdlim=”-“ nocenter nodate;data meat; input condition $ logcount @@; ivac = (condition=”vacuum”); imix = (condition=”mixed”); datalines;vacuum 5.26 vacuum 5.44 vacuum 5.80 mixed 7.41 mixed 7.33 mixed 7.04;ods html;title “Log(bacteria count) for different packaging conditions”;proc boxplot;title2 “Boxplots of log(count)”; plot logcount*condition; run;proc ttest;title2 “T-test comparing mix to vacuum conditions”; class condition; var logcount; run;proc reg;title2 “Regression with indicator variable for mix condition”; model logcount = imix; run;proc glm;title2 “One-way anova model”; class condition; model logcount = condition;run;ods html close;Log(bacteria count) for different packaging conditionsT-test comparing mix to vacuum conditionsThe TTEST ProcedureStatisticsVariable condition N LowerCLMeanMean UpperCLMeanLowerCLStd DevStd Dev UpperCLStd DevStd Err Minimum Maximumlogcount mixed 3 6.7764 7.26 7.7436 0.1014 0.1947 1.2235 0.1124 7.04 7.41logcount vacuum 3 4.817 5.5 6.183 0.1432 0.275 1.728 0.1587 5.26 5.8logcount Diff (1-2) 1.22 1.76 2.3 0.1427 0.2382 0.6845 0.1945 T-TestsVariable Method Variances DF t Value Pr > |t|logcount Pooled Equal 4 9.05 0.0008logcount Satterthwaite Unequal 3.6 9.05 0.0013Equality of VariancesVariable Method Num DF Den DF F Value Pr > Flogcount Folded F 2 2 1.99 0.6678Log(bacteria count) for different packaging conditionsRegression with indicator variable for mix conditionThe REG ProcedureModel: MODEL1Dependent Variable: logcount Number of Observations Read 6Number of Observations Used 6Analysis of VarianceSource DF Sum ofSquaresMeanSquareF Value Pr > FModel 1 4.64640 4.64640 81.87 0.0008Error 4 0.22700 0.05675 Corrected Total 5 4.87340 Root MSE 0.23822 R-Square 0.9534Dependent Mean 6.38000 Adj R-Sq 0.9418Coeff Var 3.73390 Parameter EstimatesVariable DF ParameterEstimateStandardErrort Value Pr > |t|Intercept 1 5.50000 0.13754 39.99 <.0001imix 1 1.76000 0.19451 9.05 0.0008Log(bacteria count) for different packaging conditionsOne-way anova modelThe GLM ProcedureClass Level InformationClass Levels Valuescondition 2 mixed vacuumNumber of Observations Read 6Number of Observations Used 6Dependent Variable: logcount Source DF Sum of Squares Mean Square F Value Pr > FModel 1 4.64640000 4.64640000 81.87 0.0008Error 4 0.22700000 0.05675000 Corrected Total 5 4.87340000 R-Square Coeff Var Root MSE logcount Mean0.953421 3.733896 0.238223 6.380000Source DF Type I SS Mean Square F Value Pr > Fcondition 1 4.64640000 4.64640000 81.87 0.0008Source DF Type III SS Mean Square F Value Pr > Fcondition 1 4.64640000 4.64640000 81.87 0.0008Test statistic P-value CommentT-test tobs=9.05 0.0008 Test of “1 = 2“ – note unequal variance t-test has same value test statistic [b/c sample sizes are the same]; however, slight modification in degrees of freedomRegression tobs=9.05Fobs=81.870.0008 Test of “1=0” in model logcount =0 + 1 I[condition=”mix”] + One-way ANOVA Fobs=81.87 0.0008 Test of “1 = 2“A more general formulation …Numeric data – samples from “t’ populations obtained(y11, y12, . . . , y1n1) = {y1j} j=1, …, n1(y21, y22, . . . , y2n2) = {y2j} j=1, …, n2…(yt1, yt2, . . . , ytnt) = {ytj} j=1, …, ntAssume Yij ~ independent N(i, 2)ni = number of observations from the ith populationi = 1,2, …, t (populations or treatments)j = 1, 2, …, ni (observations)TtinjijinjijitTnyymeanOverallnyymeansampleiPopulationnnnnsobsrvationofNumberTotalii  1 1..121::...:Terminology* Designed experiments versus observational studies* Completely Randomized Designs (CRD)H0: 1 = 2= 3= … = tHa: i ≠ j [at least two population means differ]Assumptions/Data?Assume Yij ~ independent N(i, 2)i = 1,2, …, tj = 1, 2, …, niTest Statistic?22WBobsSSF  where the between(among) group variability is  1112..2tyyntSSBStiiiB and the within group variability is  tnnnyytnSSWSttinjiijTWi ...211 122Reject H0 if tntaobsTFF,1,AOV TableSource SS df MS FobsBetween SSB t-1 SSB/(t-1) MSB/MSWWithin SSW nT-t SSW/( nT-t)Totals TSS nT-1  tinjijiyyTSS1 12..Example Bacteria growth in meat under different packaging conditions (revisited)*--------------------------------------------------------------------;title “One-way ANOVA/ CRD example + contrasts + multiple


View Full Document

MIAMI IES 612 - Lecture Notes

Download Lecture Notes
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture Notes and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture Notes 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?