Unformatted text preview:

Analytic Center Cutting-Plane Method• analytic center cutting-plane method• computing the analytic center• pruning constraints• lower bound and stopping criterionProf. S. Boyd, EE364b, Stanford UniversityAnalytic center cutting-plane methodanalytic center of polyhedron P = {z | aTiz  bi, i = 1, . . . , m} isAC(P) = argminz−mXi=1log(bi− aTiz)ACCPM is localiza tion me thod with next que r y point x(k+1)= AC(Pk)(found by Newton’s method)Prof. S. Boyd, EE364b, Stanford University 1ACCPM algorithmgiven an initial polyhedron P0known to contain X.k := 0.repeatCompute x(k+1)= AC(Pk).Query cutting-plane oracle at x(k+1).If x(k+1)∈ X, quit.Else, add returned cutting-plane inequality to P.Pk+1:= Pk∩ {z | aTz ≤ b}If Pk+1= ∅, quit.k := k + 1.Prof. S. Boyd, EE364b, Stanford University 2Constructing cutting-planesminimize f0(x)subject to fi(x) ≤ 0, i = 1, . . . , mf0, . . . , fm: Rn→ R convex; X is se t of optimal points; p⋆is optimal value• if x is not feasible, say fj(x) > 0, we have (deep) feasibility cutfj(x) + gTj(z − x) ≤ 0, gj∈ ∂fj(x)• if x is feasible, we have (dee p) objective cutgT0(z − x) + f0(x) − f(k)best≤ 0, g0∈ ∂f0(x)Prof. S. Boyd, EE364b, Stanford University 3Computing the analytic centerwe must solve the problemminimize Φ(x) = −Pmi=1log(bi− aTix)where dom Φ = {x | aTix < bi, i = 1, . . . , m}• challenge: we are not given a point in dom Φ• some options:– use p ha se I method to find a point in dom Φ ( or determine thatdom Φ = ∅); then use standard Newton method to compute AC– use infeasible start Newton method starting fr om a point outsidedom ΦProf. S. Boyd, EE364b, Stanford University 4Infeasible start Newton methodminimize −Pmi=1log yisubject to y = b − Axwith variables x and y• can be starte d from any x and any y ≻ 0• e.g.: take initial x as previous point xprev, and choose y asyi=bi− aTix bi− aTix > 01 otherwiseProf. S. Boyd, EE364b, Stanford University 5• define prim a l and dual residuals asrp= y + Ax − b, rd=ATνg + νwhere g = − diag(1/yi)1 is gradient of objective and r = (rd, rp)• Newton step a t (x, y, ν) is defined by0 0 AT0 H IA I 0∆x∆y∆ν= −rdrp,where H = diag(1/y2i) is Hessian of the objectiveProf. S. Boyd, EE364b, Stanford University 6• solve this system by block elimination∆x = −(ATHA)−1(ATg − ATHrp)∆y = −A∆x − rp∆ν = −H∆y − g − ν• options f or computing ∆x:– form ATHA, then use dense or spar se Cholesky f actorization– solve (diagonally scaled) least-squares problem∆x = argminzH1/2Az − H1/2rp+ H−1/2g2– use ite r ative method such as conjuga te gradients to (approximately)solve for ∆xProf. S. Boyd, EE364b, Stanford University 7Infeasible start Newton method algorithmgiven starting point x, y ≻ 0, toler a n ce ǫ > 0, α ∈ (0, 1/2), β ∈ (0, 1).ν := 0.repeat1. Compute Newton step (∆x, ∆y, ∆ν) by block elimination.2. Backtracking line search on krk2.t := 1.while y + t∆y 6≻ 0, t := βt.while kr(x + t∆x, y + t∆y, ν + t∆ν)k2> (1 − αt)kr(x, y, ν)k2,t := βt.3. Update. x : = x + t∆x, y := y + t∆y, ν := ν + t∆ν.until y = b − Ax and kr(x, y, ν)k2≤ ǫ.Prof. S. Boyd, EE364b, Stanford University 8Properties• once any equality constraint is satisfied, it rema ins satisfied f or all futureiterates• once a step size t = 1 is taken, a ll equ a lity constraints are satisfied• if dom Φ 6= ∅, t = 1 occurs in finite number of steps• if dom Φ = ∅, algorithm never convergesProf. S. Boyd, EE364b, Stanford University 9Pruning constraints• let x∗be analytic c enter of P = {z | aTiz  bi, i = 1, . . . , m}• let H∗be Hessian of barrie r at x∗,H∗= −∇2mXi=1log(bi− aTiz)z=x∗=mXi=1aiaTi(bi− aTix∗)2• then, P ⊆ E = {z | (z − x∗)TH∗(z − x∗) ≤ m2}define (ir)relevance measure ηi=bi− aTix∗paTiH∗−1aiProf. S. Boyd, EE364b, Stanford University 10• ηi/m is norm alized distance from hyperplane aTix = bito outer ellipsoid• if ηi≥ m, then c onstra int aTix ≤ biis redundantcommon ACCPM constraint dropping schemes:• drop all constraints with ηi≥ m (guarante ed to not change P)• drop constraints in order of irrelevance, keeping constant number,usually 3n – 5nProf. S. Boyd, EE364b, Stanford University 11PWL lower bound on convex function• suppose f is convex, and g(i)∈ ∂f(x(i)), i = 1, . . . , m• then we haveˆf(z) = maxi=1,...,mf(x(i)) + g(i)T(z − x(i))≤ f(z)•ˆf is PWL lower bound on fProf. S. Boyd, EE364b, Stanford University 12Lower bound in ACCPM• in solving convex problemminimize f0(x)subject to f1(x) ≤ 0,Cx  d(by taking max of constraint functions we can assume there is only one)• we ha ve evaluated f0and subgradient g0at x(1), . . . , x(q)• we ha ve evaluated f1and subgradient g1at x(q+1), . . . , x(k)• form piecew ise-linear approximationsˆf0,ˆf1Prof. S. Boyd, EE364b, Stanford University 13• form PWL relaxed problemminimizeˆf0(x)subject toˆf1(x) ≤ 0,Cx  d(can be solved via LP)• optimal value is a lower bound on p⋆• can easily construct a lower bound on the PWL relaxed problem, as aby-product of the a n a lytic centering computation• this, in turn, gives a lower bound on the original pr oblemProf. S. Boyd, EE364b, Stanford University 14• form dual of PWL relaxed problemmaximizePqi=1λi(f0(x(i)) − g(i)T0x(i))+Pki=q+1λi(f1(x(i)) − g(i)T1x(i)) − dTµsubject toPqi=1λig(i)0+Pki=q+1λig(i)1+ CTµ = 0µ  0, λ  0,Pqi=1λi= 1,• optimality condition for x(k+1)qXi=1g(i)0f(i)best− f0(x(i)) − g(i)T0(x(k+1)− x(i))+kXi=q+1g(i)1−f1(x(i)) − g(i)T1(x(k+1)− x(i))+mXi=1cidi− cTix(k+1)= 0.Prof. S. Boyd, EE364b, Stanford University 15• take τi= 1/(f(i)best− f0(x(i)) − g(i)T0(x(k+1)− x(i))) for i = 1, . . . , q.• construct a dual feasible point by takingλi=τi/1Tτ for i = 1, . . . , q1/(−f1(x(i)) − g(i)T1(x(k+1)− x(i)))(1Tτ) for i = q + 1, . . . , k,µi= 1/(di− cTix(k+1))(1Tτ) i = 1, . . . , m.• using these value s of λ and µ, we conclude thatp⋆≥ l(k+1),where l(k+1)=Pqi=1λi(f0(x(i)) − g(i)T0x(i)) +Pki=q+1λi(f1(x(i)) − g(i)T1x(i)) − dTµ.Prof. S. Boyd, EE364b, Stanford University 16Stopping criterionsince ACCPM isn’t a desce n t method, we keep track of best point found,and best lower bound• best function value so f ar: f(k)best=


View Full Document

Stanford EE 364B - Lecture Notes

Download Lecture Notes
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture Notes and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture Notes 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?