Unformatted text preview:

20.309: Biological Instrumentation and Measurement Laboratory Fall 2006 Module 3: Fluorescence Optical Microscope Contents 1 Objectives and Learning Goals 2 2 Roadmap and Milestones 2 3 Microscope Construction 3 3.1 Major microscope parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.1.1 Optical “Legos” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.1.2 Simple lenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.1.3 Objective lenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.1.4 Sample holder/stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.1.5 Fluorescence illumination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.1.6 Dichroic mirror and barrier filter . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.1.7 CCD camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.2 Construction giudelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.2.1 White light microscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.2.2 Fluorescence microscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 Experiment 1: Microscope Characterization and Fourier-Plane Imaging 8 4.1 White light calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4.2 Fluorescence characterization and imaging . . . . . . . . . . . . . . . . . . . . . . . . 8 4.3 Fourier optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4.3.1 The “light-scattering microscope” . . . . . . . . . . . . . . . . . . . . . . . . 8 4.3.2 Bio-photonic crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5 Experiment 2: Microrheology Measurements by Particle Tracking 11 5.1 Introduction and background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5.2 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5.2.1 Stability and setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5.2.2 System verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.2.3 Live cell measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 6 Experiment 3: Fluorescence Imaging of the Actin Cytoskeleton 15 6.1 Cell fixation and labeling protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 6.2 Actin imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 7 Report Requirements 17 7.1 Microscope construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 7.2 Experiment 1: microscope characterization and Fourier-plane imaging . . . . . . . . 17 7.3 Experiment 2: microrheology measurements by particle tracking . . . . . . . . . . . 17 7.4 Experiment 3: fluorescence imaging of the actin cytoskeleton . . . . . . . . . . . . . 17 120.309: Biological Instrumentation and Measurement Laboratory Fall 2006 1 Objectives and Learning Goals Become familiar with the optical ”Lego” block set. • Construct a fluorescence and white light microscope. • Understand Fourier optics and its implications in microscopy. • Become familiar with basic cell labeling procedures using fluorescent probes. • Understand microrheology measurements in cells. • This laboratory sequence is three weeks long. At the end, you will have constructed and characterized a working fluorescence microscop e. You will understand basic optical principles such as ray tracing, fluorescence detection, and resolution. You will have also applied this microscope to characterize a bio-photonic crystal, and to measure the mechanical properties of living cells. 2 Roadmap and Milestones The AFM will be the basis of three weeks’ worth of experiments, and the roadmap below is subdi-vided into weeks to help you gauge your progress. Week 1: 1. Design and Build an inverted white light microscope based on ray tracing. 2. Measure the magnification and field of view using an air force target and a Ronchi ruling with bright-field white light illumination. 3. Add a laser illumination beam path. 4. Measure the diffraction of a Ronchi ruling …


View Full Document

MIT 20 309 - Fluorescence Optical Microscope

Download Fluorescence Optical Microscope
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Fluorescence Optical Microscope and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Fluorescence Optical Microscope 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?